
Byzantine Generals 
Problem II 

& 
FLP Impossibility

August 28, 2019



Recap
• Conditions to define correct behavior


1. Any two loyal generals use the same value of v(i). 
(Regardless of i loyal or traitor)


2. If the ith general is loyal, then the value that he sends  
must be used by every loyal general as the value of v(i).


• No solution with fewer than 3m+1 nodes can cope with m 
malicious nodes if simple messages are transmitted


• If messages can be signed, a solution for m+2 generals exist 
with m traitors


• This requires knowledge of public keys and timeouts



Byzantine Generals 
Problem with Signatures

• Solution for m traitors and any number of generals


• nonsensical/trivial for <m+2 generals 


• only one loyal node, every other node is a traitor



Byzantine Generals 
Problem with Signatures

• notation

• m:i  message m signed by general i

• m:i:j:k 
• message m signed by general i

• statement “m:i” signed by j

• statement “m:i:j” signed by k 

• requires function choice()

• selects an order (attack, retreat) from a set of orders V

• if |V|=1, choice(V) = element in V

• if |V|=0, choice(V) = RETREAT



Algorithm SM(m) (>m+2 generals)



Algorithm SM(m) (3 generals)



Algorithm SM(m)  
(3 generals, 1 traitor)

Loyal Lieutenant 2 always follows the order



Algorithm SM(m)  
(3 generals, 1 traitor)

Both loyal lieutenants follows the order choice({attack, retreat})



Algorithm SM(m)  
(3 generals, 1 traitor)

order set V

L1 {“attack”}

L2 {“retreat”}

General: 

“attack”:0 to L1

“retreat”:0 to L2



Algorithm SM(m)  
(3 generals, 1 traitor)

order set V

L1 {“attack”}

L2 {“retreat”,”attack”}

L1 

“attack”:0:1 to L2



Algorithm SM(m)  
(3 generals, 1 traitor)

order set V

L1 {“attack”,”retreat”}

L2 {“retreat”,”attack”}

L2 

“retreat”:0:2 to L1



Algorithm SM(m)  
(3 generals, 1 traitor)

order set V

L1 {“attack”,”retreat”}

L2 {“retreat”,”attack”}

Both loyal lieutenants follows the order choice({attack, retreat})



Algorithm SM(m)  
(3 generals, 1 traitor)

Both loyal lieutenants follows the order choice({attack, retreat})



When to execute order

• How does Lieutenant 2 know that 1 does not send a 
message (as opposed to delayed message) 



When to execute order

• How does Lieutenant 2 know that 1 does not send a 
message (as opposed to delayed message)


• Maybe timeout … ??? 



Missing communication paths

• So far, we considered fully connected graphs only


• What happens, if each node only has some neighbors?



Missing communication paths
• Similar algorithm: Relay message to all neighbors that are not in the 

signature chain


• SM(n-2) is a solution for n generals, regardless of the number of traitors

• Max. signature chain v:0:j1:…jk has length n-2

if j5 received 


“a:0:3:6”, 

send 


“a:0:3:6:5” 

 to LT 4 and 8



Missing communication paths

• Assume all loyal generals form a connected subgraph


• Otherwise only the largest connected subgraph of loyal 
generals is relevant



Missing communication paths

• Assume all loyal generals form a connected subgraph


• Otherwise only the largest connected subgraph of loyal 
generals is relevant



Missing communication paths

• Assume all loyal generals form a connected subgraph


• Otherwise only the largest connected subgraph of loyal 
generals is relevant



Missing communication paths

• C2: If the ith general is loyal, then the value that he sends  
must be used by every loyal general as the value of v(i).


• There is a path from the loyal commander to a 
lieutenant going through d-1 or fewer loyal lieutenants. 
Those relay the message faithfully. => all loyal 
lieutenants receive the same value for v(i).



Missing communication paths

• C1: Any two loyal generals use the same value of v(i). 
(Regardless of i loyal or traitor)


• If general is loyal, C1 is full-filled by same argument

• There is a path from the loyal commander to a lieutenant going 

through d-1 or fewer loyal lieutenants. Those relay the message 
faithfully. => all loyal lieutenants receive the same value for v(i).



Missing communication paths

• C1: Any two loyal generals use the same value of v(i). (Regardless of i loyal or 
traitor)


• If general is traitor: we show that any order received by lieutenant i is also 
received by lieutenant j. 


• Assume diameter of loyal subgraph is d, 


• Every loyal general is reached within d steps of reaching the first 
loyal general


• m !  n-d traitors.


• Algorithm proceeds in n-2 !  m+d-2 rounds. 


• suppose received message is v:0:j1:…:jk but not signed by jj


• We can show that jj is reached within n-2 total steps 


• if k>m: k<m !  n-d => k+(d-1) !  n-1


• if k !  m: at least one loyal general was in the signature chain already.

≤

≥

≤ ≤

≥



Missing communication paths

• C1: Any two loyal generals use the same value of v(i). (Regardless of 
i loyal or traitor)


• If general is traitor: we show that any order received by 
lieutenant i is also received by lieutenant j. Assume diameter of 
loyal subgraph is d, thus m !  n-d traitors.


• suppose received message is v:0:j1:…:jk but not signed by jj


• k<m: ji will send message to every neighbors and it will reach 
jj within d-1 more steps.  k<m  n-d => k+(d-1)  n-1 

• k! m: At least one of the signers must have been loyal, thus 
forwarding the message to all its neighbors, whereupon it will 
be relayed by loyal generals and will reach jj within d-1 steps

≤

≤ ≤

≥



Missing communication paths

• SM(n-2) is a solution for n generals, regardless of the number of 
traitors


• (Algorithm SM for n-2 rounds)


• We can show


• IC2: There is a path from the loyal commander to a lieutenant 
going through d-1 or fewer loyal lieutenants. Those relay the 
message faithfully


• IC1: Any order received by lieutenant i is also received by 
lieutenant j, since the subgraph of loyal generals is smaller 
than n-2



Blockchain example 

Vitalik Buterin, https://vitalik.ca/general/2018/08/07/99_fault_tolerant.html



Byzantine Fault Tolerance in Databases
• An example


• Client C: 

• send request to primary (node 0)

• Wait for (same) answer from m+1 machines


• If primary is faulty, select new primary 



Distributed Consensus 
with Faulty Processes



FLP Statement 
after Michael J. Fischer, Nancy Lynch, and Mike Paterson

• ”we show the surprising result that no completely 
asynchronous consensus protocol can tolerate even a 
single unannounced process death. We do not consider 
Byzantine failures, and we assume that the message system is 
reliable — it delivers all messages correctly and exactly once. 
Nevertheless, even with these assumptions, the stopping of a 
single process at an inopportune time can cause any 
distributed commit protocol to fail to reach agreement.“



FLP Impossibility

• A deterministic consensus protocol that can handle the sudden 
death of one process does not exist

• Assumptions

• Messages may arrive in any order with any delay 

• All messages are eventually received (no lost message)



Fault tolerance

termination

(also called liveness, 


aka “we make progress”)

Consensus

(also called “safety”, or “agreement”, 


aka. “we all do the same”) 

pick 2

FLP Result



FLP Impossibility Proof
• Definitions


• Consensus Protocol


• N different processes


• Write only output register yp with one value in {b,0,1}

• i.e. undecided (bivalent), or a final state


• Processes act deterministically (no randomness)


• Processes send messages by adding (p,m) into a single global message 
queue Q. p=recipient, m=message


• The global state can be described as C=(P1,P2,P3,…,Q), where Pi is the state 
of process i and Q the message queueThe protocol proceeds in rounds


• Take a pair e=(p,m) from the buffer (or � , i.e. no message)


• Depending on p’s internal state and m, advance the state of the system

∅



FLP Impossibility Proof
• Faulty: A process that does not react to messages

• Non-Faulty: A process that is not faulty

• Bivalent: A state without a decision, yet. Both outcomes, 0 and 1 are still possible


• Goal:

• Termination: A non-faulty process decides on a value in {0, 1} by entering an 

appropriate decision state 

• Weak Agreement: All non-faulty processes that make a decision are required to 

choose the same value (only some process need to make a decision)

• Validity: Exclude trivial solutions (constant 0/1), i.e. the final value has to be 

proposed by some process at some point


• Proof will be done by contradiction


• Since the trivial solutions are excluded, the initial state must be bivalent


• We assume that there is a sequence of state transitions from a bivalent state to a 
deciding state, even if any single process may be unresponsive


• We prove that there is always a message that keeps the system in a bivalent state



FLP Impossibility Proof
• For the proof, we need 3 ingredients


1. Messages for different recipients are commutative

• If two messages are intended for p1 and p2, then it 

does not matter who received the message first


2. At least one bivalent configuration exists


3. Given a bivalent configuration and a message, then at 
least one bivalent following configuration exist


• Any execution of the protocol allow might receive message 
in such an order that the system will always be bivalent, i.e. 
never reaches a decision



Commutativity of 
independent messages

• Suppose we are in state C=(P1,P2,P3,…,Q), and two 
messages ei=(pi,mi) and ej=(pj,mj) exist. 


• Then we can 


• first apply ei to process pi and then ej to process pj, 

• first apply ej to process pj and then pi to process pi.



Commutativity of 
independent messages

• Suppose we are in state C=(P1,P2,P3,…,Q), and two messages ei=(pi,mi) and e=(pj,mj) exist. 


• Then we can 


• first apply ei to process pi and then ej to process pj, 

• first apply ej to process pj and then pi to process pi.



Commutativity of 
independent messages

• Suppose we are in state C=(P1,P2,P3,…,Q), and two messages ei=(pi,mi) and e=(pj,mj) exist. 


• Then we can 


• first apply ei to process pi and then ej to process pj, 

• first apply ej to process pj and then pi to process pi.



Commutativity of 
independent messages

• Suppose we are in state C=(P1,P2,P3,…,Q), and two messages ei=(pi,mi) and e=(pj,mj) exist. 


• Then we can 


• first apply ei to process pi and then ej to process pj, 

• first apply ej to process pj and then pi to process pi.



Commutativity of 
independent messages

• Suppose we are in state C=(P1,P2,P3,…,Q), and two messages ei=(pi,mi) and e=(pj,mj) exist. 


• Then we can 


• first apply ei to process pi and then ej to process pj, 

• first apply ej to process pj and then pi to process pi.



Commutativity of 
independent messages

• Suppose we are in state C=(P1,P2,P3,…,Q), and two messages ei=(pi,mi) and e=(pj,mj) exist. 


• Then we can 


• first apply ei to process pi and then ej to process pj, 

• first apply ej to process pj and then pi to process pi.



At least one bivalent 
configuration exists

• Build a contradiction: 

• Assume each initial configuration has only one output value

• Since we exclude trivial solution, there must be some 

configurations leading to 0 and some leading to 1



At least one bivalent 
configuration exists

• Consider all initial configurations and split them into the 
ones leading to 0 and the ones leading to 1



At least one bivalent 
configuration exists

• Order all initial states 

• difference between neighboring configurations shall be 

minimal



At least one bivalent 
configuration exists

• There must be one pair of initial configuration

• one leads to 0   -> C0

• one leads to 1   -> C1


• differ in only one process j, all others processes are identical



At least one bivalent 
configuration exists

• There must be one pair of initial states

• one leads to 0   -> C0

• one leads to 1   -> C1

• differ in only one process j, all others processes are 

identical


• Our protocol is error tolerant (i.e. it does not matter 
whether one process is dead)


• Assume process j is dead

• Execution of our protocol must be independent of j

• C0 and C1 are indistinguishable, yet lead to 0 resp. 1

Contradiction



Given a bivalent configuration and a 
message, then at least one bivalent 

following configuration exist
• Formal:

• Let C be a bivalent configuration

• e=(p,m) a message of the buffer

• Let �  be the set of all reachable configurations from C without applying 

message e

• Let �  be the set of configurations of applying e to the configurations in �  

• There is at least one bivalent configuration in �  

ℂ

𝔻 ℂ
𝔻



Given a bivalent configuration and a 
message, then at least one bivalent 

following configuration exist
• Formal:

• Let C be a bivalent configuration

• e=(p,m) a message of the buffer

• Let �  be the set of all reachable configurations from C without applying 

message e

• Let �  be the set of configurations of applying e to the configurations in �  

• There is at least one bivalent configuration in �  


• Proof by contradiction. We show:


• If no bivalent configurations, then D must have configuration leading to 1 
and configurations leading to 0


• Similar to before, we show that there are configurations that lead to 
different values, but differ only in one process.


• If that process is dead, yet our protocol can tolerate dead processes, 0 
and 1 must be reachable. Contradiction

ℂ

𝔻 ℂ
𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Formal:

• Let C be a bivalent configuration

• e=(p,m) a message of the buffer

• Let �  be the set of all reachable configurations from C without applying 

message e

• Let �  be the set of configurations of applying e to the configurations in �  

• There is at least one bivalent configuration in �  


• Since C is bivalent, there must be a configuration E0 leading to 0 

        


   and the same for E1 leading to 1

ℂ

𝔻 ℂ
𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Formal:

• Let C be a bivalent configuration

• e=(p,m) a message of the buffer

• Let �  be the set of all reachable configurations from C without applying 

message e

• Let �  be the set of configurations of applying e to the configurations in �  

• There is at least one bivalent configuration in �  


• Since C is bivalent, there must be a configuration E0 leading to 0 

        


   and the same for E1 leading to 1

ℂ

𝔻 ℂ
𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• C is bivalent, there must be a configuration E0 leading to 0 

• Let’s focus on E0. E0 must be

• case 1: in � 

• case 2: not in � , then it must be in �

ℂ
ℂ 𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• C is bivalent, there must be a configuration E0 leading to 0 

• Let’s focus on E0, case 1

• Let F0 be the state after applying message e



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• C is bivalent, there must be a configuration E0 leading to 0 

• Let’s focus on E0, case 2

• Let F0 be the a state in 

• it must exist, otherwise would the application of e either

• fix a bivalent configuration (but we assume we do not have bivalent states)

• change a configuration from 1 to 0 (yet all non-bivalent configs are final)

𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• C is bivalent, there must be a configuration E0 leading to 0 

• Le’s focus on F0

• in both cases, F0 must exist in 

• F0 is a configuration leading to 0


• Similarly, a configuration F1 leading to 1 must exist in 

𝔻

𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Set �  must contain

• D0 leading to 0

• D1 leading to 1


• so that 

• they can be reached from C0 and C1 by applying message e=(p,m)  

• configurations C0 and C1 differ by only one message e’=(p’,m’)

• configurations C0 and C1 are otherwise identical

𝔻



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Configurations C0 and C1 lead to D0 resp. D1 using e=(p,m)  

• configurations C0 and C1 differ by only one message e’=(p’,m’)

• configurations C0 and C1 are otherwise identical


• We distinguish 2 cases, p=p’ and p! p’≠



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Configurations C0 and C1 lead to D0 resp. D1 using e=(p,m)  

• configurations C0 and C1 differ by only one message e’=(p’,m’)

• configurations C0 and C1 are otherwise identical


• Case 1, p! p’:

• Messages are for two different processes

• Order in which they are received is irrelevant

• We can go from D0 to D1. Contradiction

≠



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Configurations C0 and C1 lead to D0 resp. D1 using e=(p,m)  

• configurations C0 and C1 differ by only one message e’=(p’,m’)

• configurations C0 and C1 are otherwise identical


• Case 2, p=p’: both messages are for the same processes

• Our protocol can tolerate one dead process

• There is an execution path �  that does not need process p

• execution path  leads from C0 to a non-bivalent configuration A

σ
σ



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Configurations C0 and C1 lead to D0 resp. D1 using e=(p,m)  

• configurations C0 and C1 differ by only one message e’=(p’,m’)

• configurations C0 and C1 are otherwise identical


• Case 2, p=p’:

• execution path �  and (e,e’) are commutative, since they do not involve the 

same processes

• Applying (e,e’) to A leads to 1, since D1 is a configuration leading to 1

σ



Given a bivalent configuration and a message, then 
at least one bivalent following configuration exist

• Configurations C0 and C1 lead to D0 resp. D1 using e=(p,m)  

• configurations C0 and C1 differ by only one message e’=(p’,m’)

• configurations C0 and C1 are otherwise identical


• Case 2, p=p’:

• But we can also apply message e to � , since they are commutative

• Thus, from A can lead to 1 and 0

• Contradiction, A is not bivalent

σ



Wrapping up

• If we have a deterministic, fault-tolerant protocol and the 
system is in a bivalent configuration (output not yet 
decided), we can always find a processing step that leads 
to another bivalent configuration


• Bivalent configurations exist 

        (if we ignore trivial solutions that always return 0 or 1)


• No deterministic fault-tolerant protocol can guarantee 
consensus



Take away 
“FLP Result”

Fault tolerance

termination

(also called liveness, 


aka “we make progress”)

Consensus

(also called “safety”, or “agreement”, 


aka. “we all do the same”) 

pick 2



Take away 
“FLP Result”

Fault tolerance

termination

(also called liveness, 


aka “we make progress”)

Consensus

(also called “safety”, or “agreement”, 


aka. “we all do the same”) 

pick 3 Deterministic processing

(aka. “we don’t need

a random function)



Take away
• The exact proofs themselves are not as important as the insight they provide


• Different definitions of a consensus protocols are possible


• Byzantine Fault Tolerance deals with input into the decision process

A. Any two non-faulty nodes use the same value v(i).

B. If the ith node is non-faulty, then it’s value must be used by every 

other non-faulty node as v(i).


• FLP deals with eventually reaching a decision

• Termination: All non-faulty processes eventually decide on a value

• Agreement: All processes decide on the same value


• FLP uses Weak Agreement: Only the processes that terminate 
must decide on the same value.  


• Validity: The value that has been decided must have proposed by 
some process



Take away 
“Byzantine Fault Tolerance”

• Assuming all messages arrive on time


• No consensus protocol can tolerate � traitors 

(without signatures and known identities)


• With signatures and a mechanism when to stop 
listening to messages, arbitrarily many traitors can be 
tolerated

≥
1
3

rd



Consequences

• These 2 lectures have been rather theoretical


• The results have a HUGE impact on the design of 
blockchain applications, i.e.


• Fault tolerance


• resistance against hostile takeover


• Problems with determinism 


• how/when to use randomness



Student Presentations
• Starting Sep. 9th, classes will start with student presentations


• Each student has to present twice during the semester


• One paper (from a list of pre-selected papers)


• One interesting thing about blockchains

• Quality/Reputability of source is important

• Nothing illegal 


• 7-10 min presentation


• The lecture before, we need to see the presentation


