Byzantine Generals Problem II 8 **FLP Impossibility**

August 28, 2019

Recap

- Conditions to define correct behavior
 - 1. Any two loyal generals use the same value of v(i). (Regardless of *i* loyal or traitor)
 - 2. If the *i*th general is loyal, then the value that he sends must be used by every loyal general as the value of v(i).
- No solution with fewer than 3m+1 nodes can cope with *m* malicious nodes if simple messages are transmitted
- If messages can be signed, a solution for *m*+2 generals exist with *m* traitors
 - This requires knowledge of public keys and timeouts

Byzantine Generals Problem with Signatures

- Solution for m traitors and any number of generals
 - nonsensical/trivial for <m+2 generals
 - only one loyal node, every other node is a traitor

Byzantine Generals Problem with Signatures

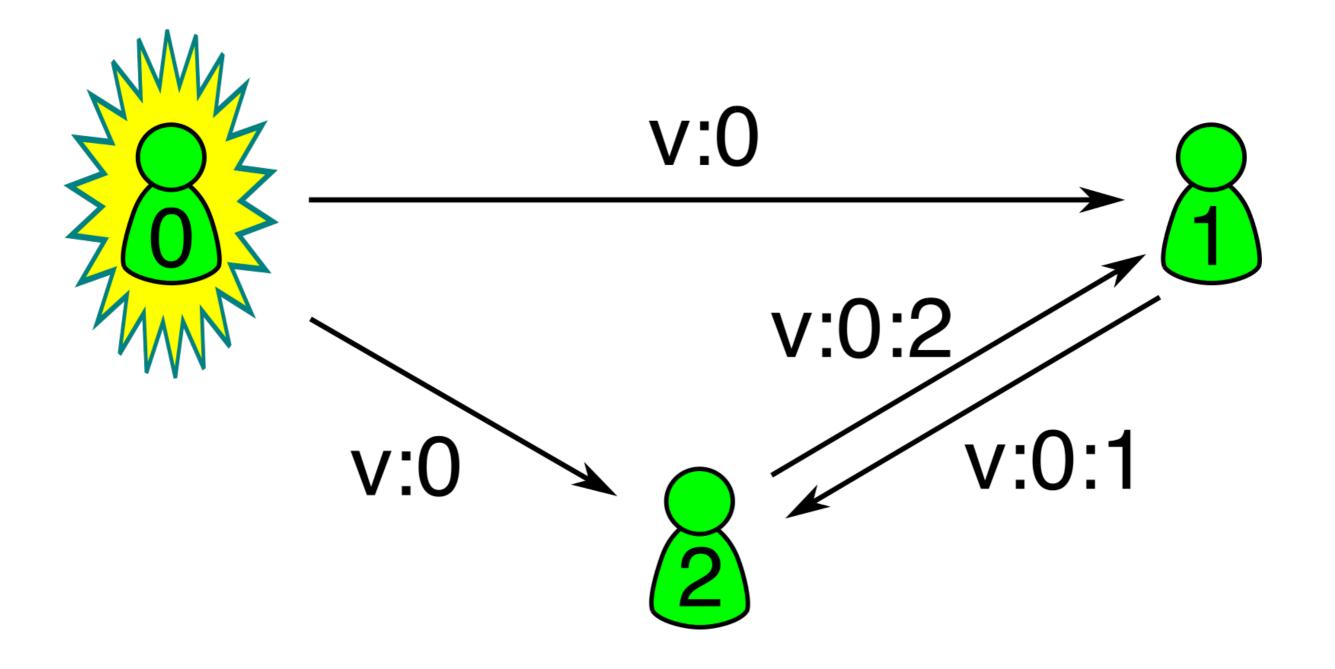
- notation
 - *m*:*i* message m signed by general *i*
 - *m:i:j:k*
 - message *m* signed by general *i*
 - statement "*m*:*i*" signed by *j*
 - statement "*m*:*i*:*j*" signed by *k*
- requires function choice()
- selects an order (attack, retreat) from a set of orders V
 - if |V|=1, *choice(V)* = element in V
 - if |V|=0, *choice*(V) = *RETREAT*

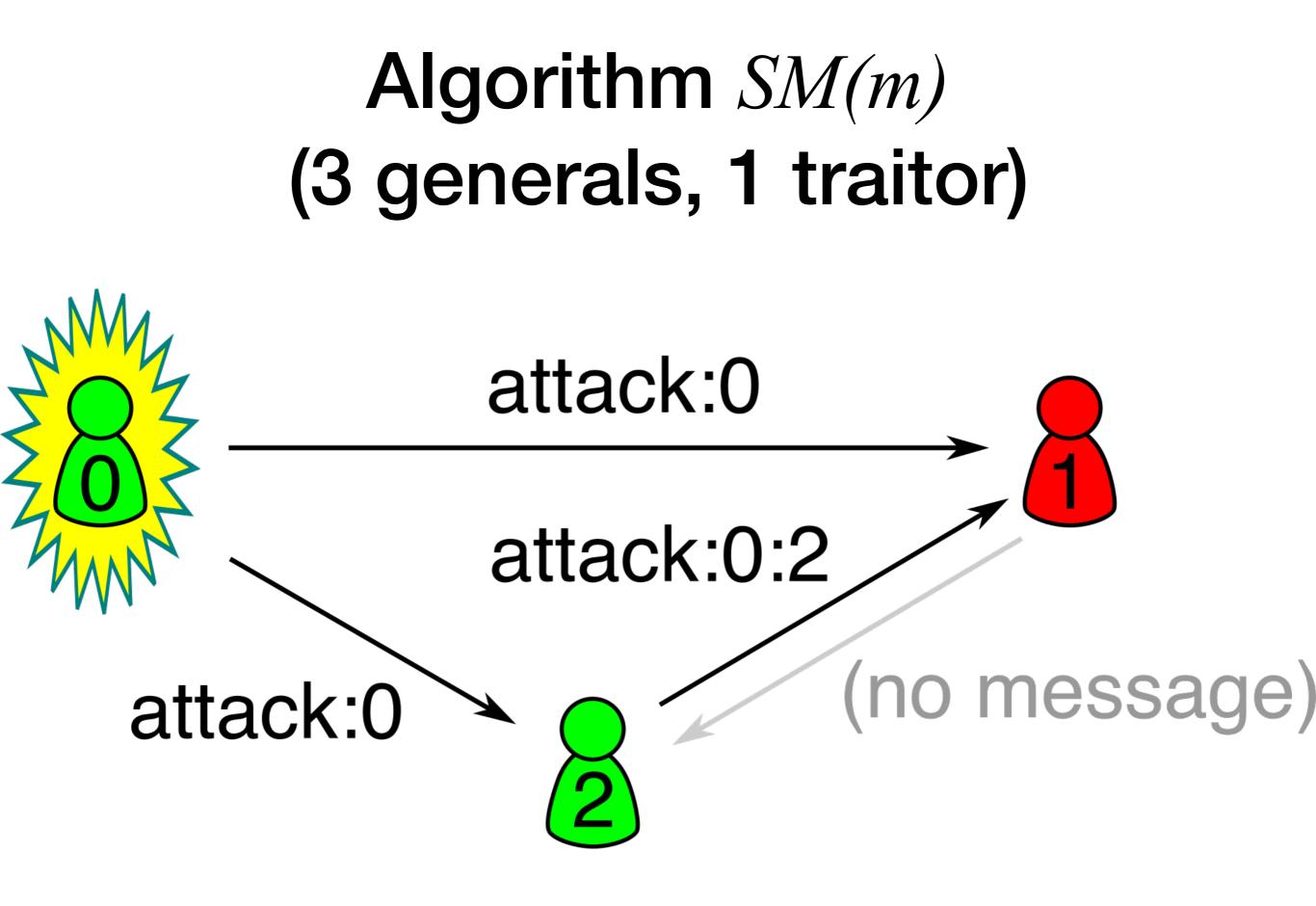
Algorithm SM(m) (>m+2 generals)

Initially $V_i = \emptyset$.

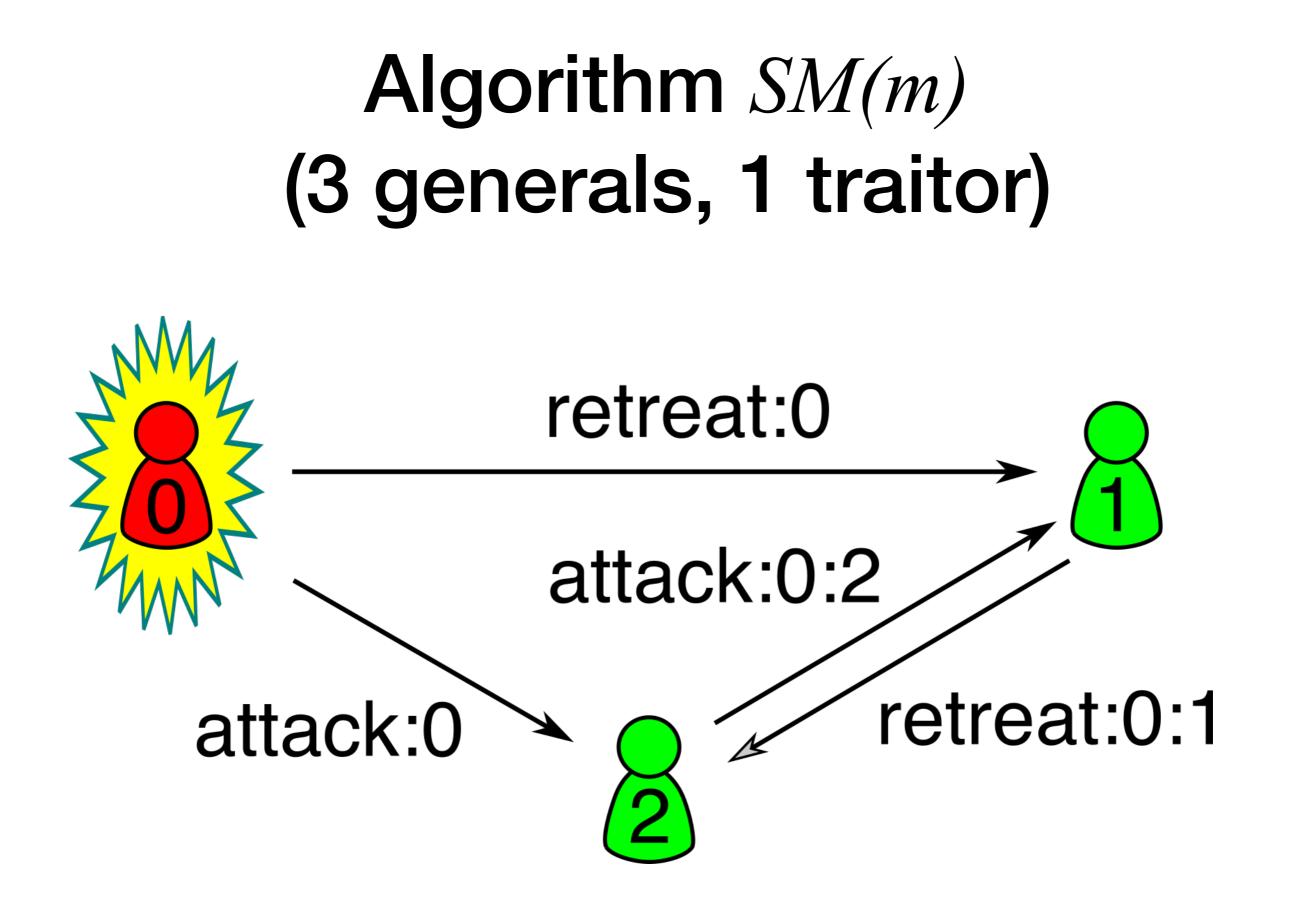
- (1) The commander signs and sends his value to every lieutenant.
- (2) For each i:
 - (A) If Lieutenant i receives a message of the form v:0 from the commander and he has not yet received any order, then
 - (i) he lets V_i equal $\{v\}$;
 - (ii) he sends the message v:0:i to every other lieutenant.
 - (B) If Lieutenant *i* receives a message of the form $v:0:j_1:\cdots:j_k$ and v is not in the set V_i , then
 - (i) he adds v to V_i ;
 - (ii) if k < m, then he sends the message $v:0:j_1:\cdots:j_k:i$ to every lieutenant other than j_1,\ldots,j_k .
- (3) For each *i*: When Lieutenant *i* will receive no more messages, he obeys the order $choice(V_i)$.

Algorithm SM(m) (3 generals)





Loyal Lieutenant 2 always follows the order



Both loyal lieutenants follows the order choice({attack, retreat})

General: "attack":0 to L1 "retreat":0 to L2

	order set V
L1	{"attack"}
L2	{"retreat"}

L1 "attack":0:1 to L2

	order set V
L1	{"attack"}
L2	{"retreat","attack"}

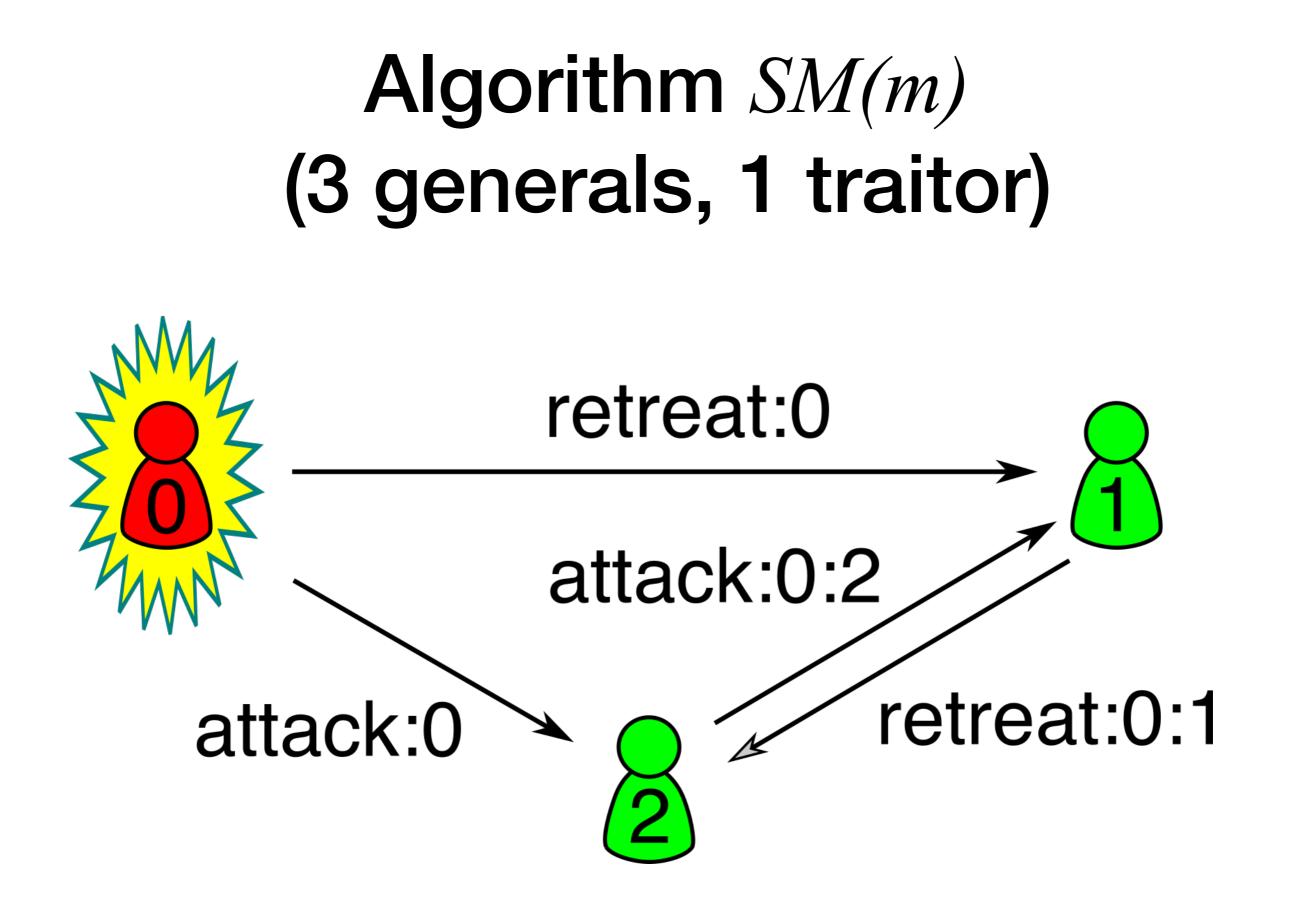
L2 "retreat":0:2 to L1

	order set V
L1	{"attack","retreat"}
L2	{"retreat","attack"}

(3) For each *i*: When Lieutenant *i* will receive no more messages, he obeys the order $choice(V_i)$.

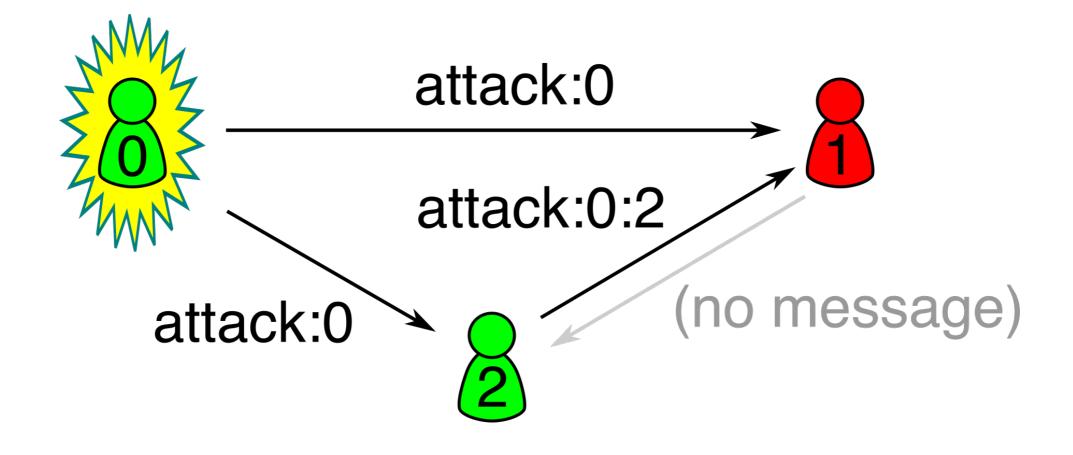
	order set V
L1	{"attack","retreat"}
L2	{"retreat","attack"}

Both loyal lieutenants follows the order *choice({attack, retreat})*



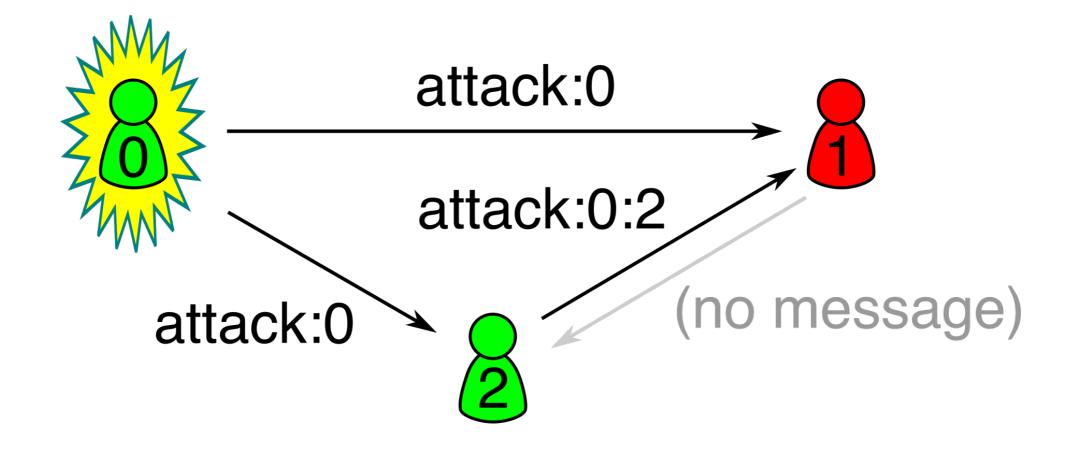
Both loyal lieutenants follows the order choice({attack, retreat})

When to execute order



 How does Lieutenant 2 know that 1 does not send a message (as opposed to delayed message)

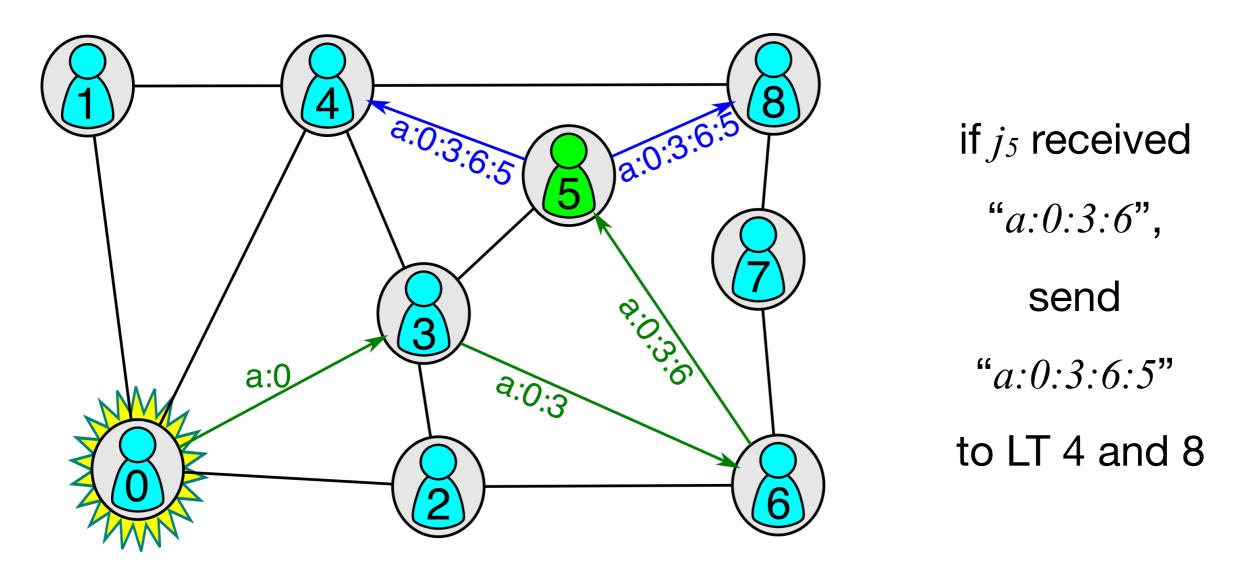
When to execute order



- How does Lieutenant 2 know that 1 does not send a message (as opposed to delayed message)
 - Maybe timeout ... ???

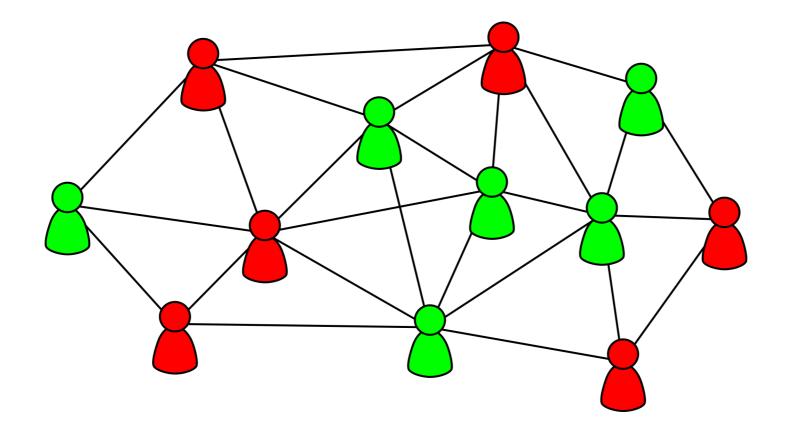
- So far, we considered fully connected graphs only
 - What happens, if each node only has some neighbors?

- Similar algorithm: Relay message to all neighbors that are not in the signature chain
- SM(n-2) is a solution for *n* generals, regardless of the number of traitors
 - Max. signature chain $v: 0: j_1: ..., j_k$ has length n-2

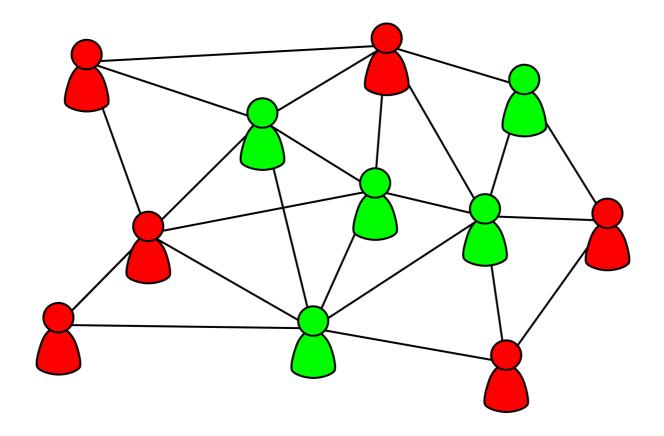


- Assume all loyal generals form a connected subgraph
 - Otherwise only the largest connected subgraph of loyal generals is relevant

- Assume all loyal generals form a connected subgraph
 - Otherwise only the largest connected subgraph of loyal generals is relevant



- Assume all loyal generals form a connected subgraph
 - Otherwise only the largest connected subgraph of loyal generals is relevant



- C2: If the ith general is loyal, then the value that he sends must be used by every loyal general as the value of v(i).
 - There is a path from the loyal commander to a lieutenant going through d-1 or fewer loyal lieutenants. Those relay the message faithfully. => all loyal lieutenants receive the same value for v(i).

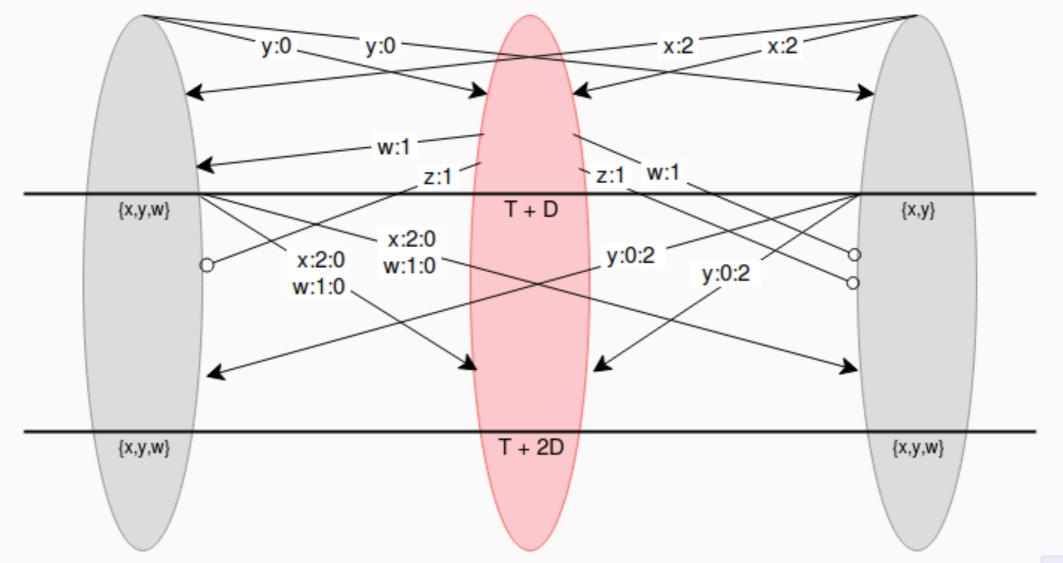
- C1: Any two loyal generals use the same value of v(i).
 (Regardless of i loyal or traitor)
 - If general is loyal, C1 is full-filled by same argument
 - There is a path from the loyal commander to a lieutenant going through d-1 or fewer loyal lieutenants. Those relay the message faithfully. => all loyal lieutenants receive the same value for *v*(*i*).

- C1: Any two loyal generals use the same value of v(i). (Regardless of i loyal or traitor)
 - If general is traitor: we show that any order received by lieutenant *i* is also received by lieutenant *j*.
 - Assume diameter of loyal subgraph is *d*,
 - Every loyal general is reached within d steps of reaching the first loyal general
 - $m \leq n \cdot d$ traitors.
 - Algorithm proceeds in $n-2 \ge m+d-2$ rounds.
 - suppose received message is $v:0:j_1:...:j_k$ but not signed by j_j
 - We can show that j_j is reached within n-2 total steps
 - if k > m: $k < m \le n d => k + (d 1) \le n 1$
 - if $k \ge m$: at least one loyal general was in the signature chain already.

- C1: Any two loyal generals use the same value of *v*(*i*). (Regardless of *i* loyal or traitor)
 - If general is traitor: we show that any order received by lieutenant *i* is also received by lieutenant *j*. Assume diameter of loyal subgraph is d, thus *m* ≤ *n*-*d* traitors.
 - suppose received message is $v:0:j_1:...:j_k$ but not signed by j_j
 - k < m: j_i will send message to every neighbors and it will reach j_j within d-1 more steps. $k < m \le n-d => k+(d-1) \le n-1$
 - *k*≥*m*: At least one of the signers must have been loyal, thus forwarding the message to all its neighbors, whereupon it will be relayed by loyal generals and will reach *j_j* within *d*-1 steps

- *SM(n-2)* is a solution for *n* generals, regardless of the number of traitors
 - (Algorithm *SM* for *n*-2 rounds)
 - We can show
 - IC2: There is a path from the loyal commander to a lieutenant going through d-1 or fewer loyal lieutenants. Those relay the message faithfully
 - IC1: Any order received by lieutenant i is also received by lieutenant j, since the subgraph of loyal generals is smaller than *n*-2

Blockchain example

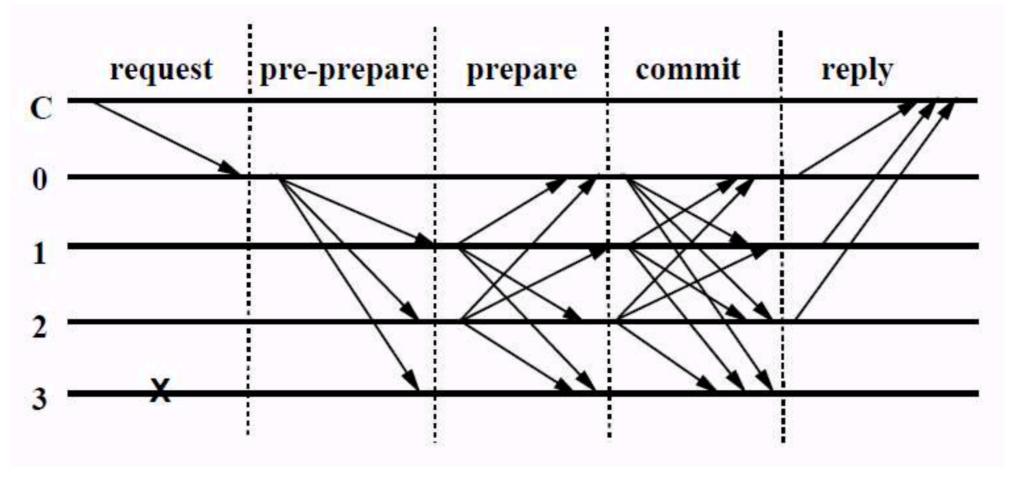


Node 1 (red) is malicious, and nodes 0 and 2 (grey) are honest. At the start, the two honest nodes make their proposals yand x, and the attacker proposes both w and z late. w reaches node 0 on time but not node 2, and z reaches neither node on time. At time T + D, nodes 0 and 2 rebroadcast all values they've seen that they have not yet broadcasted, but add their signatures on (x and w for node 0, y for node 2). Both honest nodes saw {x, y, w}.

Vitalik Buterin, https://vitalik.ca/general/2018/08/07/99_fault_tolerant.html

Byzantine Fault Tolerance in Databases

• An example



- Client C:
 - send request to primary (node 0)
 - Wait for (same) answer from m+1 machines
- If primary is faulty, select new primary

Distributed Consensus with Faulty Processes

FLP Statement

after Michael J. Fischer, Nancy Lynch, and Mike Paterson

 "we show the surprising result that no completely asynchronous consensus protocol can tolerate even a single unannounced process death. We do not consider Byzantine failures, and we assume that the message system is reliable — it delivers all messages correctly and exactly once. Nevertheless, even with these assumptions, the stopping of a single process at an inopportune time can cause any distributed commit protocol to fail to reach agreement."

FLP Impossibility

- A deterministic consensus protocol that can handle the sudden death of one process does not exist
 - Assumptions
 - Messages may arrive in any order with any delay
 - All messages are eventually received (no lost message)

FLP Result

Fault tolerance

pick 2

termination (also called liveness, aka "we make progress") Consensus (also called "safety", or "agreement", aka. "we all do the same")

FLP Impossibility Proof

- Definitions
 - Consensus Protocol
 - N different processes
 - Write only output register y_p with one value in $\{b,0,1\}$
 - i.e. undecided (bivalent), or a final state
 - Processes act deterministically (no randomness)
 - Processes send messages by adding (*p*,*m*) into a single global message queue *Q*. *p*=recipient, *m*=message
 - The global state can be described as $C=(P_1, P_2, P_3, ..., Q)$, where P_i is the state of process *i* and *Q* the message queueThe protocol proceeds in rounds
 - Take a pair e=(p,m) from the buffer (or \emptyset , i.e. no message)
 - Depending on *p*'s internal state and *m*, advance the state of the system

FLP Impossibility Proof

- Faulty: A process that does not react to messages
- Non-Faulty: A process that is not faulty
- Bivalent: A state without a decision, yet. Both outcomes, 0 and 1 are still possible
- Goal:
 - **Termination**: A non-faulty process decides on a value in {0, 1} by entering an appropriate decision state
 - Weak Agreement: All non-faulty processes that make a decision are required to choose the same value (only some process need to make a decision)
 - Validity: Exclude trivial solutions (constant 0/1), i.e. the final value has to be proposed by some process at some point
- Proof will be done by contradiction
 - Since the trivial solutions are excluded, the initial state must be bivalent
 - We assume that there is a sequence of state transitions from a bivalent state to a deciding state, even if any single process may be unresponsive
 - We prove that there is always a message that keeps the system in a bivalent state

FLP Impossibility Proof

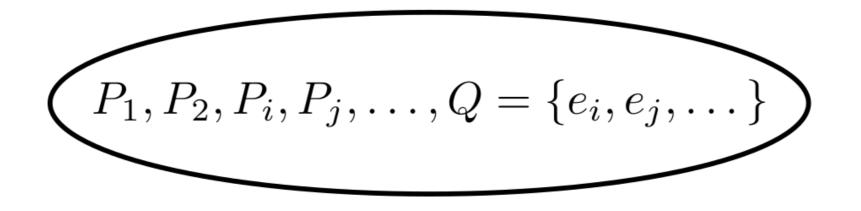
- For the proof, we need 3 ingredients
 - 1. Messages for different recipients are commutative
 - If two messages are intended for p_1 and p_2 , then it does not matter who received the message first
 - 2. At least one bivalent configuration exists
 - 3. Given a bivalent configuration and a message, then at least one bivalent following configuration exist
- Any execution of the protocol allow might receive message in such an order that the system will always be bivalent, i.e. never reaches a decision

Commutativity of independent messages

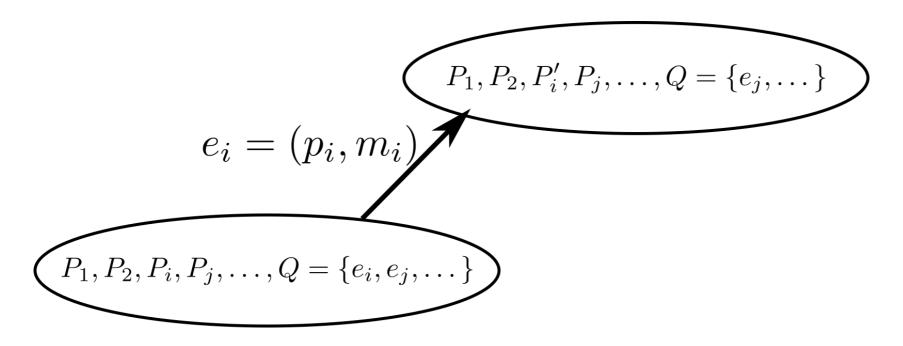
- Suppose we are in state C=(P₁, P₂, P₃, ..., Q), and two
 messages e_i=(p_i, m_i) and e_j=(p_j, m_j) exist.
- Then we can
 - first apply e_i to process p_i and then e_j to process p_j ,
 - first apply e_j to process p_j and then p_i to process p_i .

Commutativity of independent messages

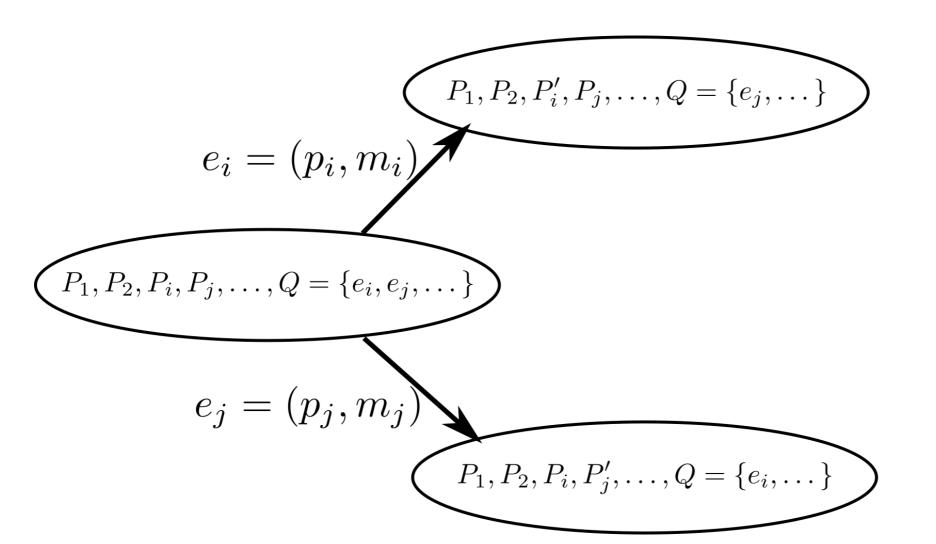
- Suppose we are in state $C=(P_1, P_2, P_3, ..., Q)$, and two messages $e_i=(p_i, m_i)$ and $e=(p_j, m_j)$ exist.
- Then we can
 - first apply e_i to process p_i and then e_j to process p_j ,
 - first apply e_j to process p_j and then p_i to process p_i .



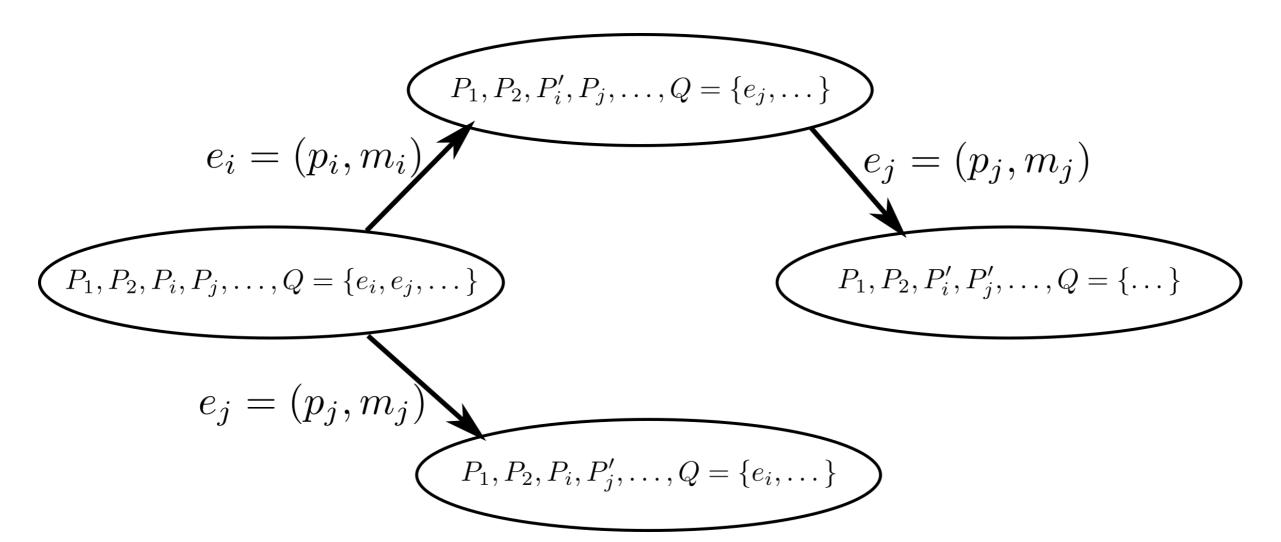
- Suppose we are in state $C=(P_1, P_2, P_3, ..., Q)$, and two messages $e_i=(p_i, m_i)$ and $e=(p_j, m_j)$ exist.
- Then we can
 - first apply e_i to process p_i and then e_j to process p_j ,
 - first apply e_j to process p_j and then p_i to process p_i .



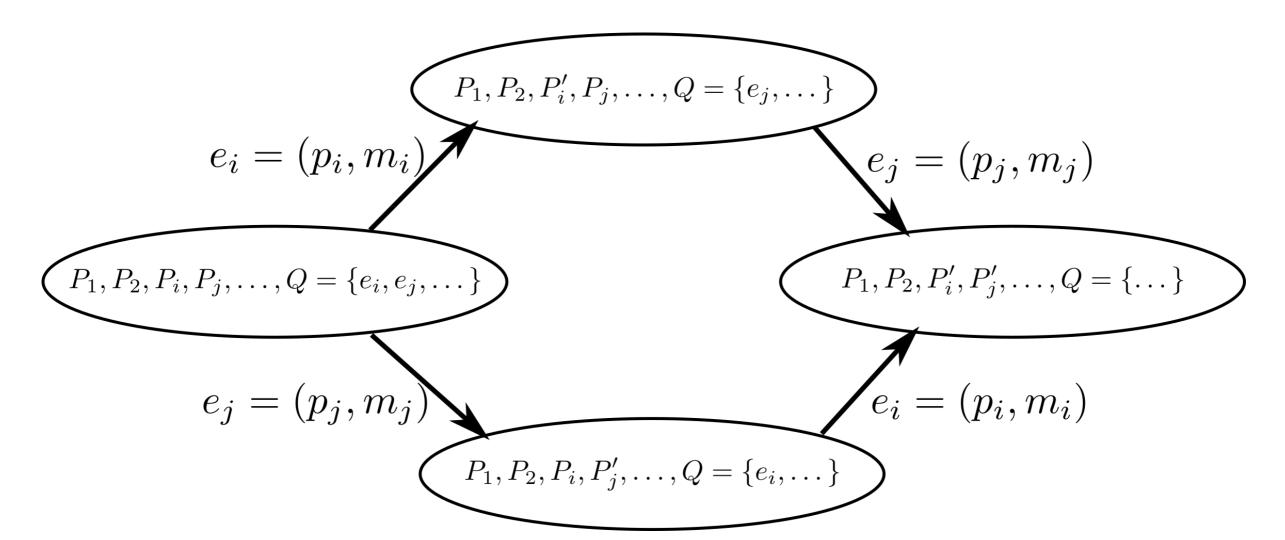
- Suppose we are in state $C=(P_1, P_2, P_3, ..., Q)$, and two messages $e_i=(p_i, m_i)$ and $e=(p_j, m_j)$ exist.
- Then we can
 - first apply e_i to process p_i and then e_j to process p_j ,
 - first apply e_j to process p_j and then p_i to process p_i .



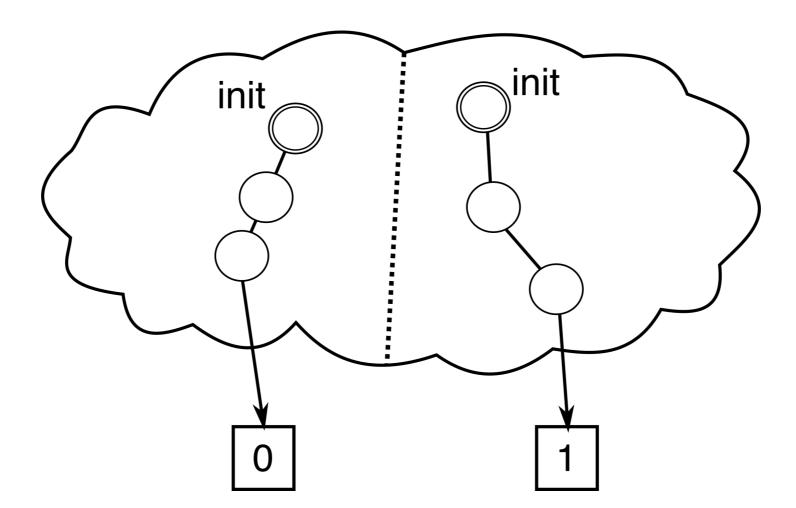
- Suppose we are in state $C=(P_1, P_2, P_3, ..., Q)$, and two messages $e_i=(p_i, m_i)$ and $e=(p_j, m_j)$ exist.
- Then we can
 - first apply e_i to process p_i and then e_j to process p_j ,
 - first apply e_j to process p_j and then p_i to process p_i .



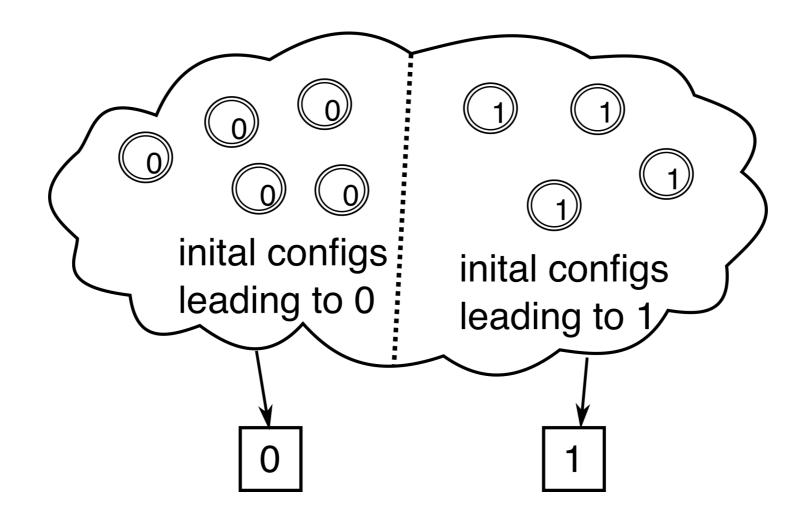
- Suppose we are in state $C=(P_1, P_2, P_3, ..., Q)$, and two messages $e_i=(p_i, m_i)$ and $e=(p_j, m_j)$ exist.
- Then we can
 - first apply e_i to process p_i and then e_j to process p_j ,
 - first apply e_j to process p_j and then p_i to process p_i .



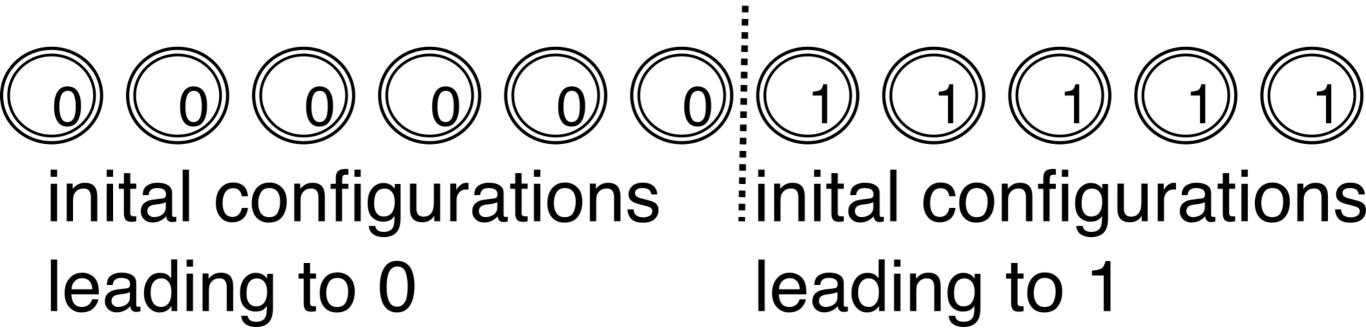
- Build a contradiction:
 - Assume each initial configuration has only one output value
 - Since we exclude trivial solution, there must be some configurations leading to 0 and some leading to 1



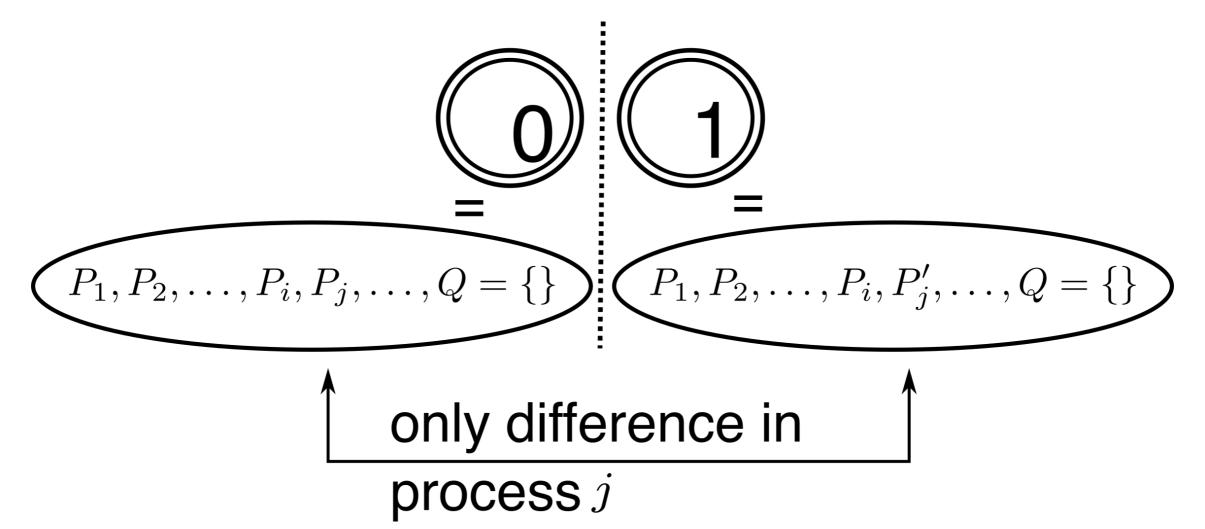
 Consider all initial configurations and split them into the ones leading to 0 and the ones leading to 1



- Order all initial states
 - difference between neighboring configurations shall be minimal



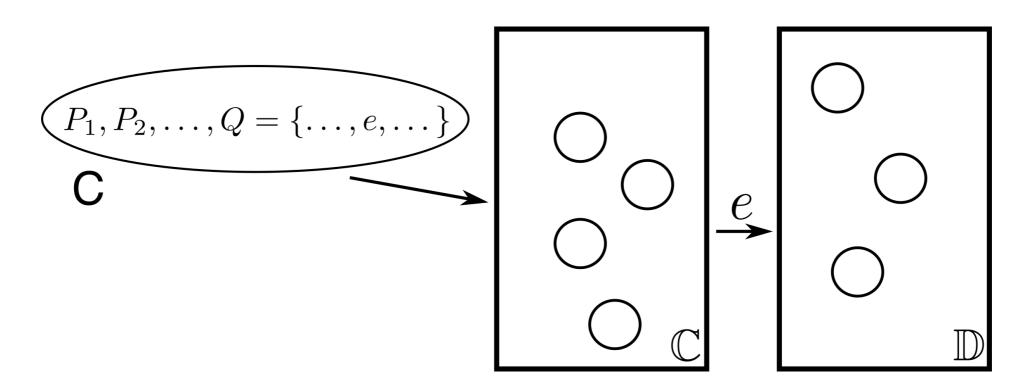
- There must be one pair of initial configuration
 - one leads to 0 $\rightarrow C_0$
 - one leads to 1 $\rightarrow C_1$
 - differ in only one process *j*, all others processes are identical



- There must be one pair of initial states
 - one leads to 0 $\rightarrow C_0$
 - one leads to 1 $\rightarrow C_1$
 - differ in only one process *j*, all others processes are identical
- Our protocol is error tolerant (i.e. it does not matter whether one process is dead)
- Assume process *j* is dead
- Execution of our protocol must be independent of j
- C_0 and C_1 are indistinguishable, yet lead to 0 resp. 1

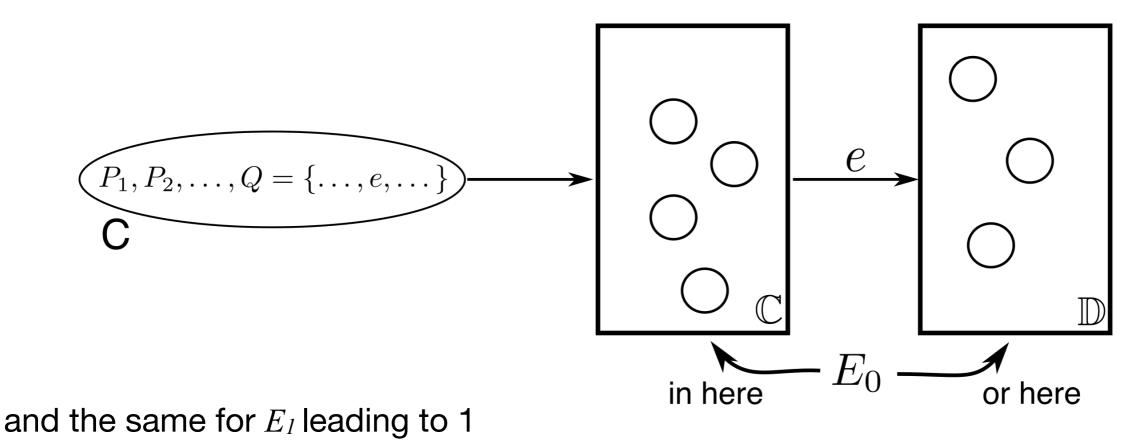
Contradiction

- Formal:
 - Let C be a bivalent configuration
 - e=(p,m) a message of the buffer
 - Let $\mathbb C$ be the set of all reachable configurations from C without applying message e
 - Let $\mathbb D$ be the set of configurations of applying e to the configurations in $\mathbb C$
 - There is at least one bivalent configuration in $\ensuremath{\mathbb{D}}$

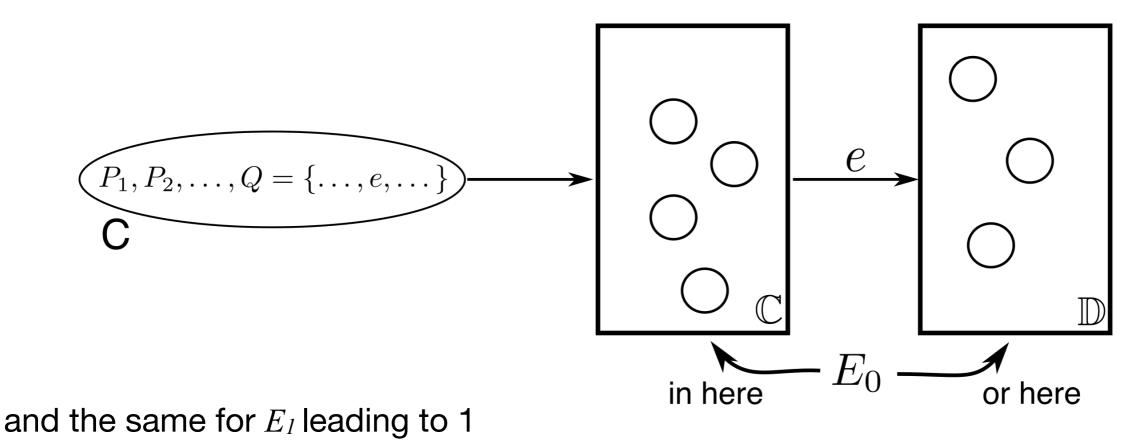


- Formal:
 - Let C be a bivalent configuration
 - e=(p,m) a message of the buffer
 - Let $\mathbb C$ be the set of all reachable configurations from C without applying message e
 - Let $\mathbb D$ be the set of configurations of applying e to the configurations in $\mathbb C$
 - There is at least one bivalent configuration in $\mathbb D$
- Proof by contradiction. We show:
 - If no bivalent configurations, then D must have configuration leading to 1 and configurations leading to 0
 - Similar to before, we show that there are configurations that lead to different values, but differ only in one process.
 - If that process is dead, yet our protocol can tolerate dead processes, 0 and 1 must be reachable. Contradiction

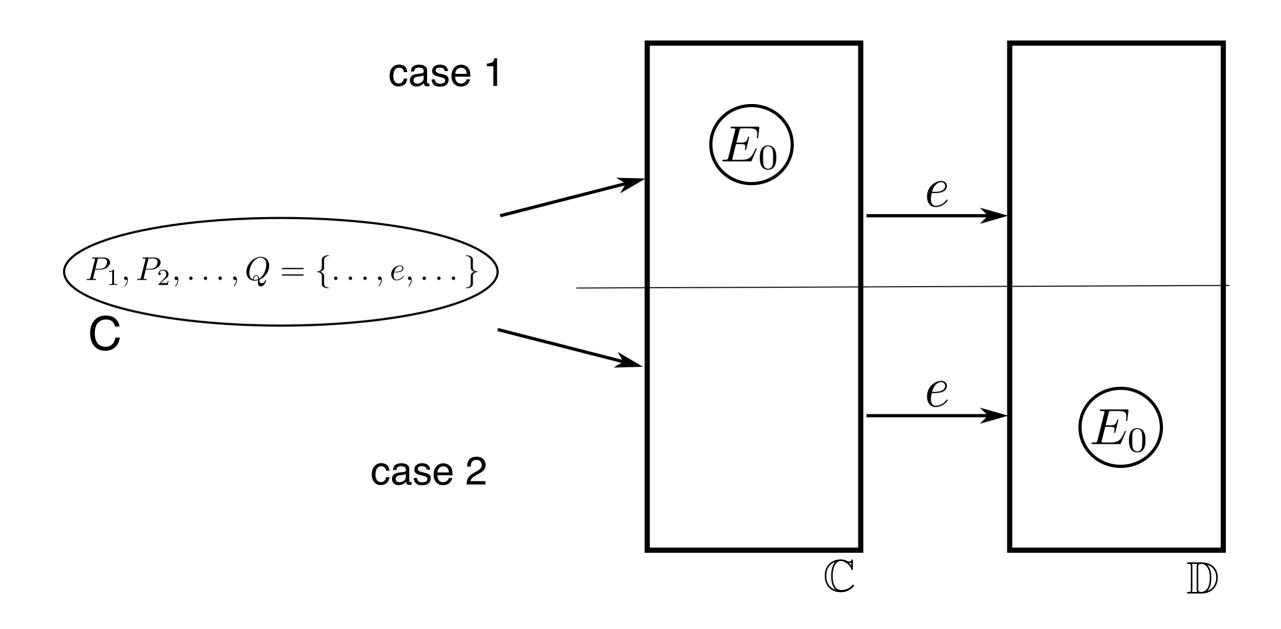
- Formal:
 - Let C be a bivalent configuration
 - *e*=(*p*,*m*) a message of the buffer
 - Let \mathbb{C} be the set of all reachable configurations from C without applying message e
 - Let $\mathbb D$ be the set of configurations of applying e to the configurations in $\mathbb C$
 - There is at least one bivalent configuration in $\mathbb D$
- Since C is bivalent, there must be a configuration E_0 leading to 0



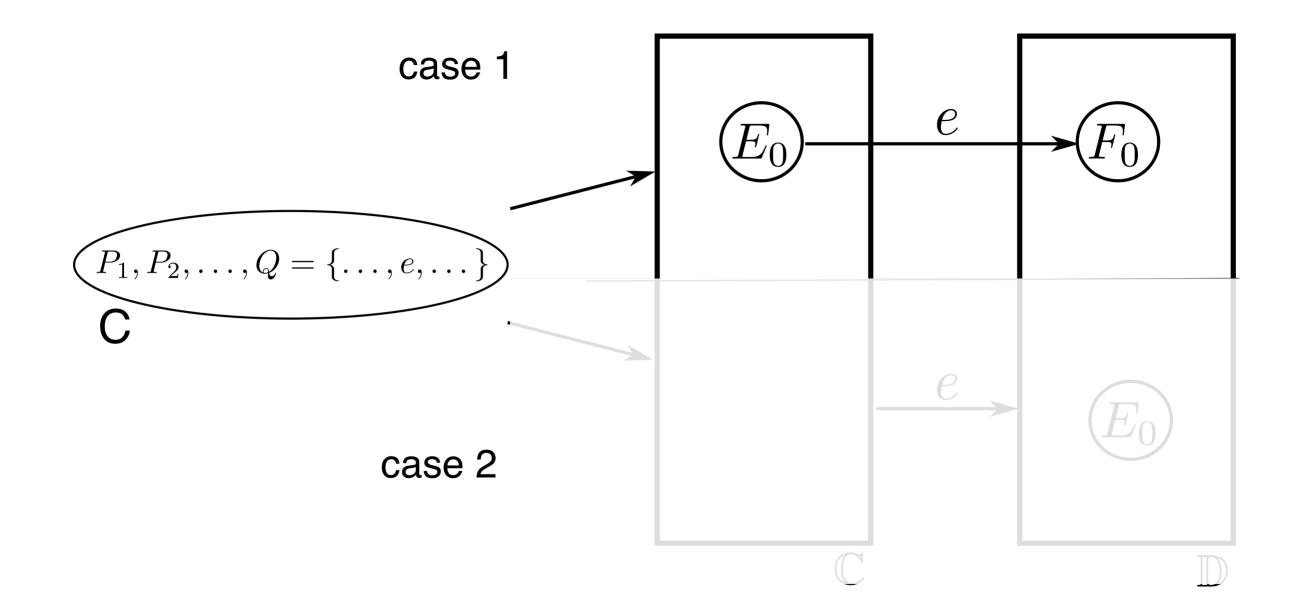
- Formal:
 - Let C be a bivalent configuration
 - *e*=(*p*,*m*) a message of the buffer
 - Let \mathbb{C} be the set of all reachable configurations from C without applying message e
 - Let $\mathbb D$ be the set of configurations of applying e to the configurations in $\mathbb C$
 - There is at least one bivalent configuration in $\mathbb D$
- Since C is bivalent, there must be a configuration E_0 leading to 0



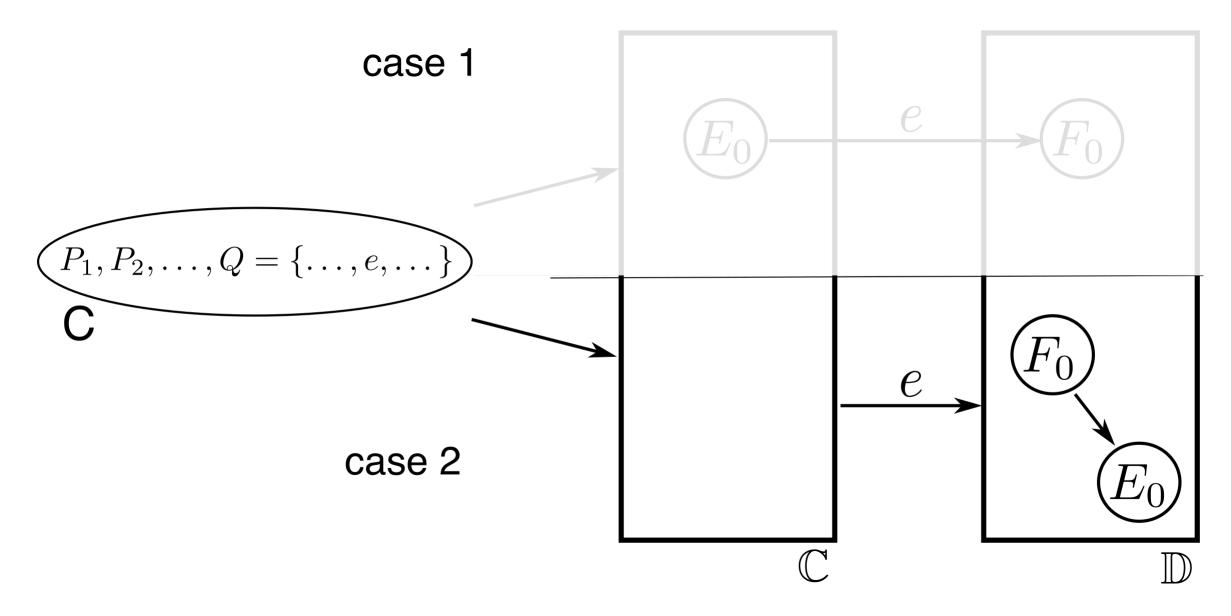
- C is bivalent, there must be a configuration E_0 leading to 0
- Let's focus on E_0 . E_0 must be
 - case 1: in \mathbb{C}
 - case 2: not in $\mathbb C,$ then it must be in $\mathbb D$



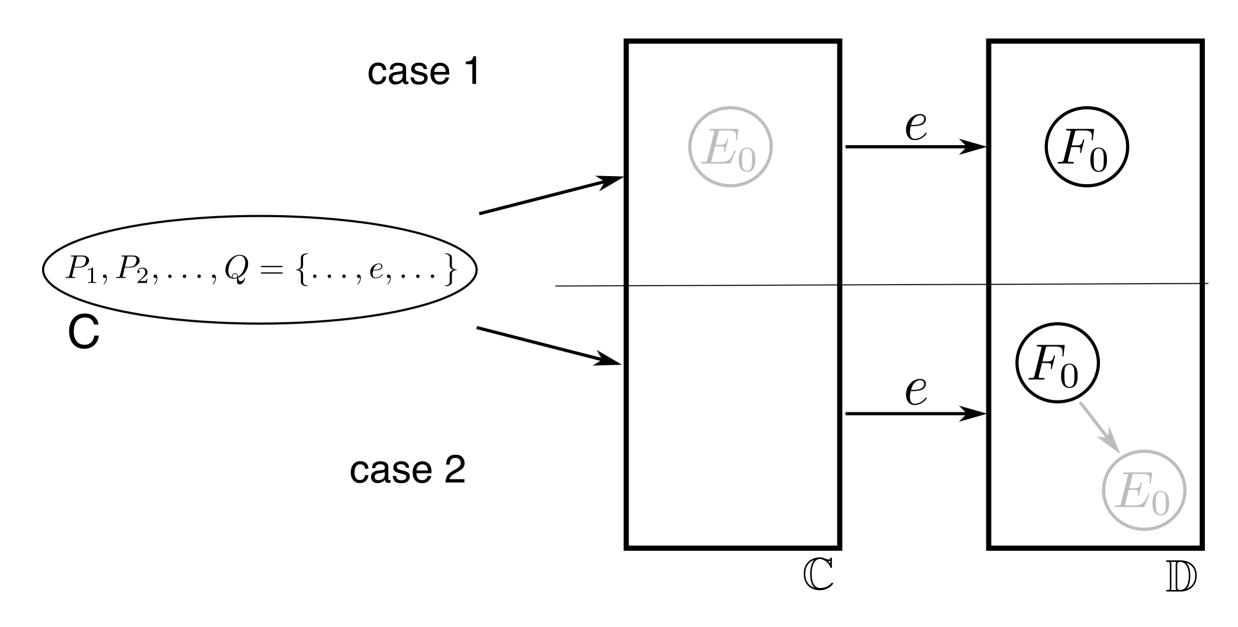
- C is bivalent, there must be a configuration E_0 leading to 0
- Let's focus on *E*₀, case 1
- Let F_0 be the state after applying message e



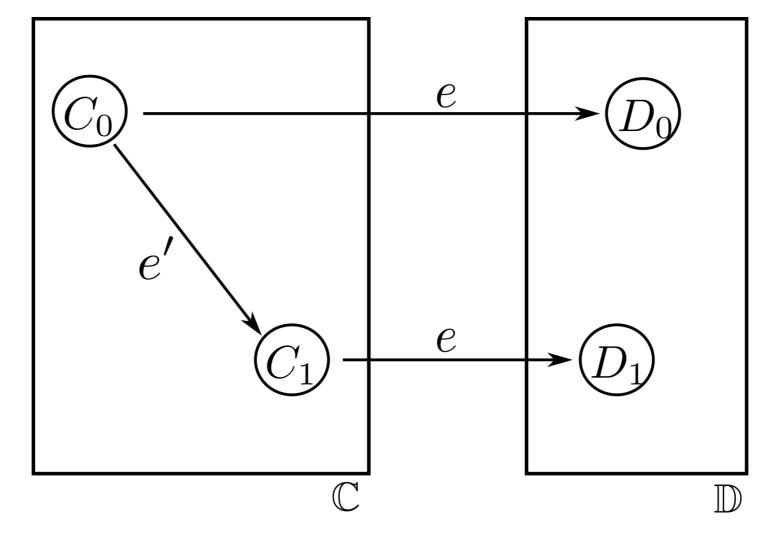
- C is bivalent, there must be a configuration E_0 leading to 0
- Let's focus on *E*₀, case 2
- Let F_0 be the a state in \mathbb{D}
 - it must exist, otherwise would the application of e either
 - fix a bivalent configuration (but we assume we do not have bivalent states)
 - change a configuration from 1 to 0 (yet all non-bivalent configs are final)



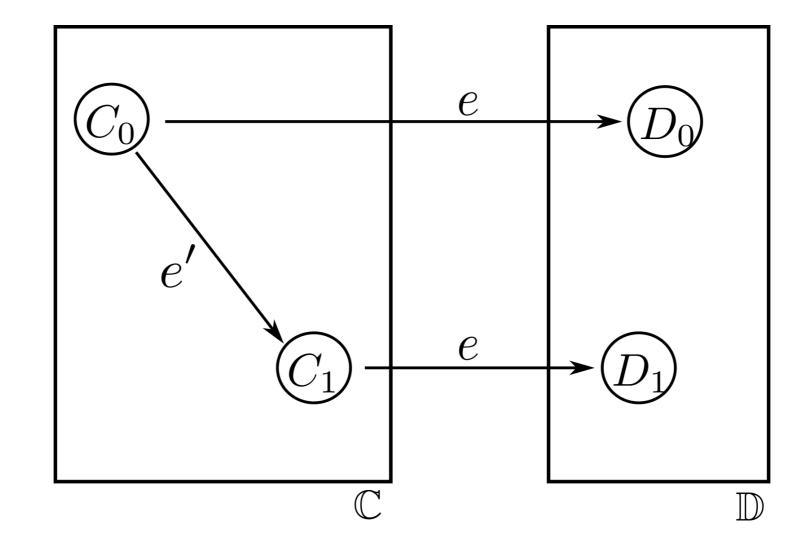
- C is bivalent, there must be a configuration E_0 leading to 0
- Le's focus on F_0
 - in both cases, F_0 must exist in $\mathbb D$
 - *F*⁰ is a configuration leading to 0
- Similarly, a configuration F_1 leading to 1 must exist in \mathbb{D}



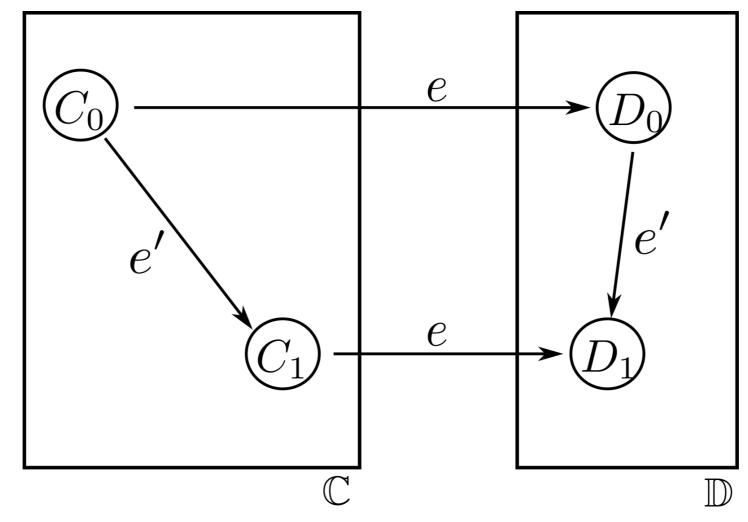
- Set \mathbb{D} must contain
 - D_0 leading to 0
 - D_1 leading to 1
- so that
 - they can be reached from C_0 and C_1 by applying message e=(p,m)
 - configurations C_0 and C_1 differ by only one message e'=(p',m')
 - configurations C_0 and C_1 are otherwise identical



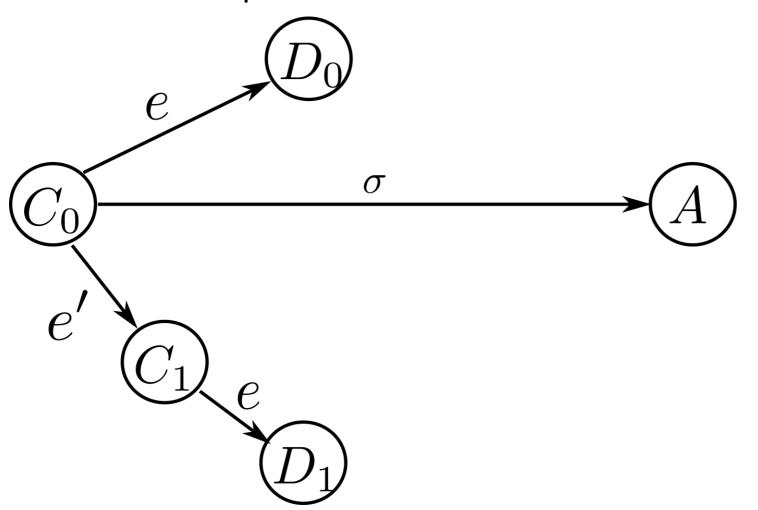
- Configurations C_0 and C_1 lead to D_0 resp. D_1 using e=(p,m)
- configurations C_0 and C_1 differ by only one message e'=(p',m')
 - configurations C_0 and C_1 are otherwise identical
- We distinguish 2 cases, p=p' and $p\neq p'$



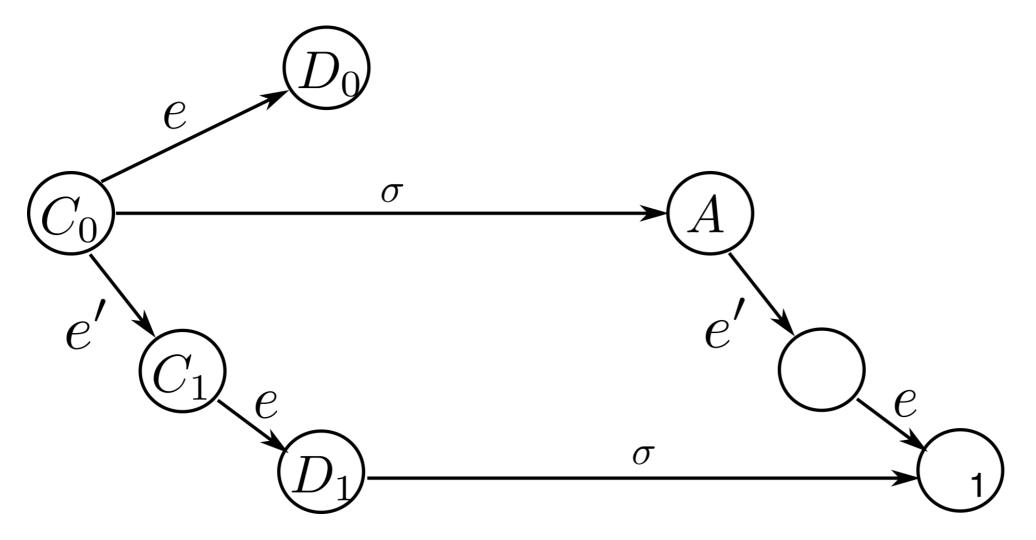
- Configurations C_0 and C_1 lead to D_0 resp. D_1 using e=(p,m)
- configurations C_0 and C_1 differ by only one message e'=(p',m')
 - configurations C_0 and C_1 are otherwise identical
- Case 1, *p≠p* ':
 - Messages are for two different processes
 - Order in which they are received is irrelevant
 - We can go from D_0 to D_1 . Contradiction



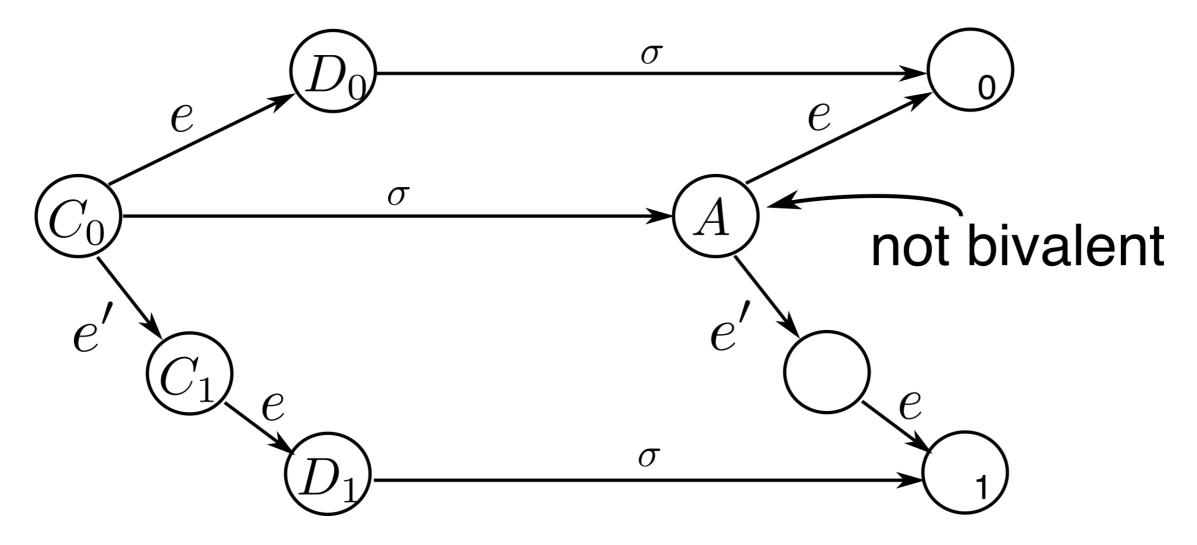
- Configurations C_0 and C_1 lead to D_0 resp. D_1 using e=(p,m)
- configurations C_0 and C_1 differ by only one message e'=(p',m')
 - configurations C_0 and C_1 are otherwise identical
- Case 2, *p*=*p*': both messages are for the same processes
 - Our protocol can tolerate one dead process
 - There is an execution path σ that does not need process p
 - execution path σ leads from C_0 to a non-bivalent configuration A



- Configurations C_0 and C_1 lead to D_0 resp. D_1 using e=(p,m)
- configurations C_0 and C_1 differ by only one message e'=(p',m')
 - configurations C_0 and C_1 are otherwise identical
- Case 2, *p=p*':
 - execution path σ and (*e*,*e*') are commutative, since they do not involve the same processes
 - Applying (*e*,*e*') to A leads to 1, since *D1* is a configuration leading to 1



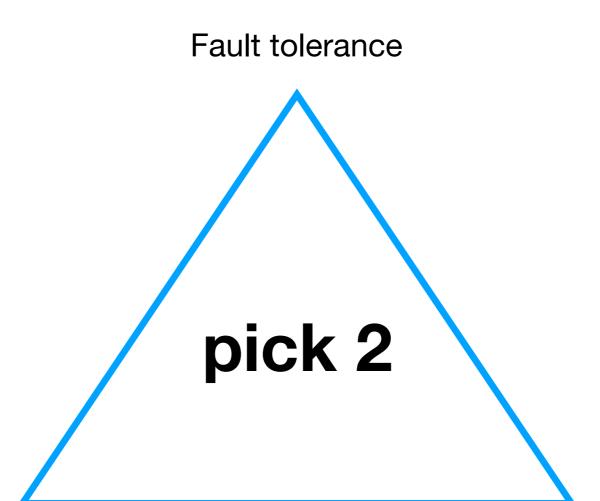
- Configurations C_0 and C_1 lead to D_0 resp. D_1 using e=(p,m)
- configurations C_0 and C_1 differ by only one message e'=(p',m')
 - configurations C_0 and C_1 are otherwise identical
- Case 2, *p=p*':
 - But we can also apply message e to σ , since they are commutative
 - Thus, from A can lead to 1 and 0
 - Contradiction, A is not bivalent



Wrapping up

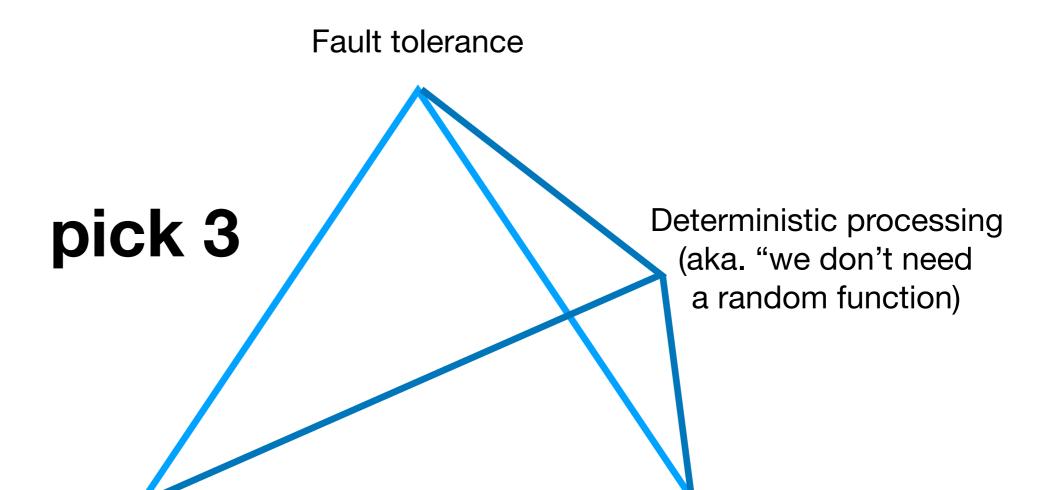
- If we have a deterministic, fault-tolerant protocol and the system is in a bivalent configuration (output not yet decided), we can always find a processing step that leads to another bivalent configuration
 - Bivalent configurations exist (if we ignore trivial solutions that always return 0 or 1)
- No deterministic fault-tolerant protocol can guarantee consensus

Take away "FLP Result"



termination (also called liveness, aka "we make progress") Consensus (also called "safety", or "agreement", aka. "we all do the same")

Take away "FLP Result"



termination (also called liveness, aka "we make progress") Consensus (also called "safety", or "agreement", aka. "we all do the same")

Take away

- The exact proofs themselves are not as important as the insight they provide
- Different definitions of a consensus protocols are possible
 - Byzantine Fault Tolerance deals with input into the decision process
 - A. Any two non-faulty nodes use the same value v(i).
 - B. If the *i*th node is non-faulty, then it's value must be used by every other non-faulty node as v(i).
 - FLP deals with eventually reaching a decision
 - Termination: All non-faulty processes eventually decide on a value
 - Agreement: All processes decide on the same value
 - FLP uses **Weak Agreement**: Only the processes that terminate must decide on the same value.
 - Validity: The value that has been decided must have proposed by some process

Take away "Byzantine Fault Tolerance"

• Assuming all messages arrive on time

• No consensus protocol can tolerate $\geq \frac{1}{3}^{rd}$ traitors (without signatures and known identities)

 With signatures and a mechanism when to stop listening to messages, arbitrarily many traitors can be tolerated

Consequences

- These 2 lectures have been rather theoretical
- The results have a HUGE impact on the design of blockchain applications, i.e.
 - Fault tolerance
 - resistance against hostile takeover
 - Problems with determinism
 - how/when to use randomness

Student Presentations

- Starting Sep. 9th, classes will start with student presentations
- Each student has to present twice during the semester
 - One paper (from a list of pre-selected papers)
 - One interesting thing about blockchains
 - Quality/Reputability of source is important
 - Nothing illegal
 - 7-10 min presentation
 - The lecture before, we need to see the presentation