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Overview of today

• Lack of Privacy in Bitcoin


• MimbleWimble cryptocurrency


• ECC math


• Schnorr’s signatures scheme


• Pedersen Commitments



Motivation
• Bitcoin is decentralized and anonymous, but not private

• Everybody can see the amounts transferred

• We can trace payments and money



MimbleWimble
• MimbleWimble, a Tongue-Tying Spell from Harry Potter


• The protocol is unable to spill details about a transaction


• MW is build on ECC


• Pedersen Commitments 

• to hide amounts


• Schnorr signatures (as opposed to ECDSA)


• To prove that transactions are correct



Signatures

• A signature proofs that the owner of a private key created 
some input-dependent data


• 


• Everybody can verify this using the public key


•

s = sign(sk, document)

verify(pk, document, s) ∈ {True, False}



Signatures with ECC
• For elliptic curve cryptography, (at least) 3 types of signatures exist


• ECDSA 


• Schnorr - signature


• BLS (Boneh–Lynn–Shacham)


• Schnorr’s signature are easier to understand and implement correctly 
than ECDSA


• Schnorr’s signatures are extendable

• A property we will use today
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ECDSA
• Widely used and researched


• Malleable, i.e. an attacker can change the document 
and the signature without knowing the private key


• several extra checks have to be performed to 
prevent attacks


• In short:

• On the way out. Not a focus of this course



Schnorr’s signature

• Relatively new (popularized only recently)


• Non-malleable


• Concepts, security proofs, and implementation easier


• In short:

• Schnorr’s signatures are often better than ECDSA



BLS signature
• Relatively new (popularized only recently)


• Require special elliptic curves


• Believed to be secure


• In short:

• Potentially very useful for complex applications

• Security proofs and trusted implementations not yet 

widely accepted



Elliptic point math 
(Recap)

• Capital letters: points on a curve 


• lower case letters: integers 


• Points can be added 

• P+Q, P+P+P+Q+Q+Q


• Points can be multiplied with a numbers 

• aG, (b+c)P


• Commutative and associative rules are preserved 


•

P, Q, R, … ∈ Zp × Zp

a, b, c… ∈ Z

a ((b + c)P + d(e + f )G) = adeG + adfG + abP + acP



Schnorr’s signature
• Global parameters:

• Base-point G publicly known


• non-invertible hash function 


• User specific parameters


• Private key: integer 


• Public key: Point 


• One-time parameters

• document to sign 


• random (secret) number 


• Public point 

ℋ

p
P = pG

r
R = rG



Schnorr’s signature
• sign(document, private key = p)


1. generate random number 

2. compute 


3. return 


• verify(document, signature = (s,R), public key=P):


        


             


             

r
s = r + ℋ (R |P |document) p

(s, rG)

sG ?= R + ℋ (R |P |document) P

= rG + ℋ (R |P |document) pG

= (r + ℋ (R |P |document) p) G

 random one-time noncerG = R

 public keyP = pG



Schnorr’s multi-signature
• We can easily extend this scheme to multi-signatures

• We can prove that a group of people all signed it


• Alice (private/public key a / aG), random secret point n

• Bob (private/public key b / bG), random secret point m


• multisig: (s, nG+mG)


• s = n + m + ℋ (nG + mG |aG + bG |document)(a + b)



Schnorr’s multi-signature 
communication protocol

• Goal, compute 


• 


• without revealing secrets  to other party


• Alice: 


• Bob:  


• Multi-sig: 

        


                   

s = n + m + ℋ (nG + mG |aG + bG |document)(a + b)
a, b, n, m

sa = n + ℋ (nG + mG |aG + bG |document) a
sb = m + ℋ (nG + mG |aG + bG |document) b

sa + sb = n + m + ℋ( . . . )b + ℋ( . . . )a
= n + m + ℋ( . . . )(a + b)



Summary Schnorr’s 
signatures

• A number and a point


• ( , rG)


• Easy to compute and to verify


• Linear, i.e. we can aggregate signatures into one


• e.g. 200 aggregated signatures are still only one 
number and one point

r + ℋ(rG |pG | text)p



Pedersen Commitments
• Instead of one base point, we use 2: G,H


• secret value s


• use random value 

• Let’s use Greek letters for random values

• Also called blinding factors


• Pedersen commitment of s is 


Note: There is a value z so that  
          It is important that no one knows this value

γ

sG + γH

H = zG

T. P. Pedersen



Pedersen Commitments

X = rG + γH

• Impossible to separate  into the part generated by  
and the part generated by 

X G
H



Proving properties of 
Pedersen Commitments

• Alice can prove  by using X in a signature


• Alice sends 


 and 


• Bob verifies


 


 

r = 0

s = m + ℋ (X |M | "Alice") γ mH

sH ?= mH + ℋ (X |M | "Alice") X

sH ?= mH + yX

X = rG + γH

with y = ℋ( . . . )



Proving that one part is 0
• Bob knows that


•   is a term only generated by H


• since 


• Alice does not know 


• Therefore,  does not have any G

(mH + yX)
sH = mH + yX

z with H = zG

X



Summary Pedersen 
Commitments

• We use 2 base points (G,H)


• Also called generators


• We can commit value r using blinding factor 


•  


• We can prove that  without revealing 


• Using Schorr’s signature scheme

γ

X = rG + γH

r = 0 γ



MimbleWimble
(A cryptocurrency protocol)


2 implementations: Beam and Grin



Cryptocurrency with 
Pedersen Commitments

X = rG + γH

Amount, e.g. r = 12C Secret Key, e.g. γ = 6234756385423387465



Alice's returnBob’s outputAlice’s input

Transactions in MW
• Alice has r=12 coins in  


• Alice wants to send 4 coins to Bob


• Alice and Bob publish equation


 


   


• Only Alice knows 


• Only Bob knows 

• The blockchain removes A from the UTXO and adds B,C

A = rG + γH

A − B − C

(12G + γH) − (4G + βH) − (8G + αH)

γ, α
β



Transactions in MW

• Verify correctness of a transaction:


• given eq. 


• A transaction is valid, if inputs = outputs 


• All coefficients of G sum up to 0, i.e. 


•

(xG + γH) − (yG + βH) − (zG + αH)

x − y − z = 0

(xG + γH) − (yG + βH) − (zG + αH) = (γ − β − α)H



Transactions in MW

• A transaction  is


• a point on the curve


• a Pedersen commitment


• We can use Schnorr’s signature to proof that T is only 
made out of H components

T = A − B − C



Transactions in MW
• A transaction  is


• a point on the curve


• a Pedersen commitment


• We can use Schnorr’s signature to proof that T is only made 
out of H components


• provide a point  and value , so that 


 

T = A − B − C

M s

sH = M + ℋ (M |T |sometext) T

could be the empty string



Transactions in MW
• There is one more hole to plug. Consider transaction


   


• This is valid

• 12-400-(-388) = 0

• Bob now has 400 coins


• This is a problem


• We need to prove that each Pedersen Commitment is >0


• Range proofs are outside the scope of today’s lecture


• Bulletproofs (later)

T = (12G + γH) − (400G + βH) − (−388G + αH)
Input Alice Output Bob Return Alice



Transactions in MW

• We now have all the ingredients for a MW transaction.


• Alice owns a known Pedersen commitment 


• Alice and Bob interact (off chain) to produce


• 


• , so that 

• A range proof coefficient of G in B > 0

• A range proof coefficient of G in C > 0

A

T = A − B − C
(s, M) sH = M + ℋ( . . . )T



Creating Transactions
Alice (owns )


•  

• random 

• Range proof for C


• 

• 


•

A = 12G + γH

C = 8G + αH
M = mH

T = A − B − C
h = ℋ (M + N |T | "")
sa = m + h(γ − α)

Bob


• 

• random 

• 

• 


• 

• Range proof for B 


B = 4G + βH
N = nH

T = A − B − C
h = ℋ (M + N |T | "")
sb = n + h(−β)

Alice In: A

Alice out: C

Amount: 4


Random nonce: M

Excess: (γ − α)H

Bob Out: B

Range proof: r(B)


partial sig: 

Random nonce: N

sb

Alice publishes A, B, C, (sa + sb, M + N ), r(B), r(C)



Summary of MW 
Transactions

• All values are hidden in Pedersen Commitments


• Transactions given as an equation

 


• To prove that transactions are valid


• use Schnorr’s signature scheme to show that the 
 can be expressed by only using generator H


• use range proofs to show that all amounts >0

Inputs − Output = Excess

Excess



Extra Security 

• The MW miner sees all these values


• An honest miner can obfuscate the 
block by disassociating inputs and 
outputs

All inputs

All outputs

Range proof for outputs

All excesses

Schnorr Signatures for outputs

MimbleWimble Block

Verify via 
sum(inputs)-sum(outputs) = sum(excess)



Kernel Offset for extra 
obfuscation 

• An attacker can easily match inputs 
with outputs


• Thus, add an arbitrary value to each 
tx


       In1 - Out1 = Excess1 + offset1

       In2 - Out2 = Excess2 + offset2

       …

All inputs

All outputs

Range proof for outputs

All excesses

Schnorr Signatures for outputs

MimbleWimble Block

Verify via 
sum(inputs)-sum(outputs)  

= 
 sum(excess) + offset

Offset



Efficiency Gains

• If 


• A sends money to B


• B sends money to C


• we don’t need to store any information about B



Cut Through
• Given 2 transactions 


• 


• 


•  is also 
valid


• Only final inputs and outputs need to be published

T1 = A + B + C − D − E

T2 = D + G + H − J − K

T1 + T2 = A + B + C + G + H − E − J − K

output used directly as input for another tx



MimbleWimble

• The 2 popular implementations use proof-of-work 


• ASIC resistance through algorithms that use a lot of 
memory


• Mining Fees are special transactions added to each block


• Similar to bitcoin



Dandelion Anonymity



Verifying the entire MW 
state

• The total amount of coins created by mining in the chain.


• Easy: #block * mining_reward_per_block


• The complete set of unspent outputs


• A Pedersen Commitment is a group element (64 bit)


• The transactions signatures for each transaction


• Signature is (number, group element)-tuple (96 bits)


• Range proof ~ 1.5kb



Verifying the entire MW 
state

• The transactions signatures for each transaction contain the entire 
history


• Contains information about every coin, even long after the coin 
was spend


• Grows over time


• Consider 2 Schnorr signatures

• ( , rG) 

•  ( , qG)


• Can not be combined without interaction


• Transaction signatures can not be compressed

r + ℋ(rG |pG | text)p
m + ℋ(mG |qG | text)q



Future of MimbleWimble

• Alternative signature scheme (BLS)


• 


• We can compress all transaction signatures of the past 
in one signature


• Verifying one signature is sufficient to proof that 
throughout the entire history, all transactions were correct

Ssum = S1 + S2


