
Schnorr Signature
&

MimbleWimble
Oct. 5, 2019

Overview of today

• Lack of Privacy in Bitcoin

• MimbleWimble cryptocurrency

• ECC math

• Schnorr’s signatures scheme

• Pedersen Commitments

Motivation
• Bitcoin is decentralized and anonymous, but not private

• Everybody can see the amounts transferred

• We can trace payments and money

MimbleWimble
• MimbleWimble, a Tongue-Tying Spell from Harry Potter

• The protocol is unable to spill details about a transaction

• MW is build on ECC

• Pedersen Commitments

• to hide amounts

• Schnorr signatures (as opposed to ECDSA)

• To prove that transactions are correct

Signatures

• A signature proofs that the owner of a private key created
some input-dependent data

•

• Everybody can verify this using the public key

•

s = sign(sk, document)

verify(pk, document, s) ∈ {True, False}

Signatures with ECC
• For elliptic curve cryptography, (at least) 3 types of signatures exist

• ECDSA

• Schnorr - signature

• BLS (Boneh–Lynn–Shacham)

• Schnorr’s signature are easier to understand and implement correctly
than ECDSA

• Schnorr’s signatures are extendable

• A property we will use today

Timeline of ECC-based
Signature

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

ECC
proposed

C.-P. Schnorr
patents a
signature

scheme on
ECC

patent

NIST develops ECDSA signatures to
circumvent Schnorr’s patent

S. Nakamoto develops Bitcoin (ECDSA)

Schnorr’s sig. patent expires

ECC becomes popular Now

ECDSA
• Widely used and researched

• Malleable, i.e. an attacker can change the document
and the signature without knowing the private key

• several extra checks have to be performed to
prevent attacks

• In short:

• On the way out. Not a focus of this course

Schnorr’s signature

• Relatively new (popularized only recently)

• Non-malleable

• Concepts, security proofs, and implementation easier

• In short:

• Schnorr’s signatures are often better than ECDSA

BLS signature
• Relatively new (popularized only recently)

• Require special elliptic curves

• Believed to be secure

• In short:

• Potentially very useful for complex applications

• Security proofs and trusted implementations not yet

widely accepted

Elliptic point math
(Recap)

• Capital letters: points on a curve

• lower case letters: integers

• Points can be added

• P+Q, P+P+P+Q+Q+Q

• Points can be multiplied with a numbers

• aG, (b+c)P

• Commutative and associative rules are preserved

•

P, Q, R, … ∈ Zp × Zp

a, b, c… ∈ Z

a ((b + c)P + d(e + f)G) = adeG + adfG + abP + acP

Schnorr’s signature
• Global parameters:

• Base-point G publicly known

• non-invertible hash function

• User specific parameters

• Private key: integer

• Public key: Point

• One-time parameters

• document to sign

• random (secret) number

• Public point

ℋ

p
P = pG

r
R = rG

Schnorr’s signature
• sign(document, private key = p)

1. generate random number

2. compute

3. return

• verify(document, signature = (s,R), public key=P):

r
s = r + ℋ (R |P |document) p

(s, rG)

sG ?= R + ℋ (R |P |document) P

= rG + ℋ (R |P |document) pG

= (r + ℋ (R |P |document) p) G

 random one-time noncerG = R

 public keyP = pG

Schnorr’s multi-signature
• We can easily extend this scheme to multi-signatures

• We can prove that a group of people all signed it

• Alice (private/public key a / aG), random secret point n

• Bob (private/public key b / bG), random secret point m

• multisig: (s, nG+mG)

• s = n + m + ℋ (nG + mG |aG + bG |document)(a + b)

Schnorr’s multi-signature
communication protocol

• Goal, compute

•

• without revealing secrets to other party

• Alice:

• Bob:

• Multi-sig:

s = n + m + ℋ (nG + mG |aG + bG |document)(a + b)
a, b, n, m

sa = n + ℋ (nG + mG |aG + bG |document) a
sb = m + ℋ (nG + mG |aG + bG |document) b

sa + sb = n + m + ℋ(. . .)b + ℋ(. . .)a
= n + m + ℋ(. . .)(a + b)

Summary Schnorr’s
signatures

• A number and a point

• (, rG)

• Easy to compute and to verify

• Linear, i.e. we can aggregate signatures into one

• e.g. 200 aggregated signatures are still only one
number and one point

r + ℋ(rG |pG | text)p

Pedersen Commitments
• Instead of one base point, we use 2: G,H

• secret value s

• use random value

• Let’s use Greek letters for random values

• Also called blinding factors

• Pedersen commitment of s is

Note: There is a value z so that
 It is important that no one knows this value

γ

sG + γH

H = zG

T. P. Pedersen

Pedersen Commitments

X = rG + γH

• Impossible to separate into the part generated by
and the part generated by

X G
H

Proving properties of
Pedersen Commitments

• Alice can prove by using X in a signature

• Alice sends

 and

• Bob verifies

r = 0

s = m + ℋ (X |M | "Alice") γ mH

sH ?= mH + ℋ (X |M | "Alice") X

sH ?= mH + yX

X = rG + γH

with y = ℋ(. . .)

Proving that one part is 0
• Bob knows that

• is a term only generated by H

• since

• Alice does not know

• Therefore, does not have any G

(mH + yX)
sH = mH + yX

z with H = zG

X

Summary Pedersen
Commitments

• We use 2 base points (G,H)

• Also called generators

• We can commit value r using blinding factor

•

• We can prove that without revealing

• Using Schorr’s signature scheme

γ

X = rG + γH

r = 0 γ

MimbleWimble
(A cryptocurrency protocol)

2 implementations: Beam and Grin

Cryptocurrency with
Pedersen Commitments

X = rG + γH

Amount, e.g. r = 12C Secret Key, e.g. γ = 6234756385423387465

Alice's returnBob’s outputAlice’s input

Transactions in MW
• Alice has r=12 coins in

• Alice wants to send 4 coins to Bob

• Alice and Bob publish equation

• Only Alice knows

• Only Bob knows

• The blockchain removes A from the UTXO and adds B,C

A = rG + γH

A − B − C

(12G + γH) − (4G + βH) − (8G + αH)

γ, α
β

Transactions in MW

• Verify correctness of a transaction:

• given eq.

• A transaction is valid, if inputs = outputs

• All coefficients of G sum up to 0, i.e.

•

(xG + γH) − (yG + βH) − (zG + αH)

x − y − z = 0

(xG + γH) − (yG + βH) − (zG + αH) = (γ − β − α)H

Transactions in MW

• A transaction is

• a point on the curve

• a Pedersen commitment

• We can use Schnorr’s signature to proof that T is only
made out of H components

T = A − B − C

Transactions in MW
• A transaction is

• a point on the curve

• a Pedersen commitment

• We can use Schnorr’s signature to proof that T is only made
out of H components

• provide a point and value , so that

T = A − B − C

M s

sH = M + ℋ (M |T |sometext) T

could be the empty string

Transactions in MW
• There is one more hole to plug. Consider transaction

• This is valid

• 12-400-(-388) = 0

• Bob now has 400 coins

• This is a problem

• We need to prove that each Pedersen Commitment is >0

• Range proofs are outside the scope of today’s lecture

• Bulletproofs (later)

T = (12G + γH) − (400G + βH) − (−388G + αH)
Input Alice Output Bob Return Alice

Transactions in MW

• We now have all the ingredients for a MW transaction.

• Alice owns a known Pedersen commitment

• Alice and Bob interact (off chain) to produce

•

• , so that

• A range proof coefficient of G in B > 0

• A range proof coefficient of G in C > 0

A

T = A − B − C
(s, M) sH = M + ℋ(. . .)T

Creating Transactions
Alice (owns)

•

• random

• Range proof for C

•

•

•

A = 12G + γH

C = 8G + αH
M = mH

T = A − B − C
h = ℋ (M + N |T | "")
sa = m + h(γ − α)

Bob

•

• random

•

•

•

• Range proof for B

B = 4G + βH
N = nH

T = A − B − C
h = ℋ (M + N |T | "")
sb = n + h(−β)

Alice In: A

Alice out: C

Amount: 4

Random nonce: M

Excess: (γ − α)H

Bob Out: B

Range proof: r(B)

partial sig:

Random nonce: N

sb

Alice publishes A, B, C, (sa + sb, M + N), r(B), r(C)

Summary of MW
Transactions

• All values are hidden in Pedersen Commitments

• Transactions given as an equation

• To prove that transactions are valid

• use Schnorr’s signature scheme to show that the
 can be expressed by only using generator H

• use range proofs to show that all amounts >0

Inputs − Output = Excess

Excess

Extra Security

• The MW miner sees all these values

• An honest miner can obfuscate the
block by disassociating inputs and
outputs

All inputs

All outputs

Range proof for outputs

All excesses

Schnorr Signatures for outputs

MimbleWimble Block

Verify via
sum(inputs)-sum(outputs) = sum(excess)

Kernel Offset for extra
obfuscation

• An attacker can easily match inputs
with outputs

• Thus, add an arbitrary value to each
tx

 In1 - Out1 = Excess1 + offset1

 In2 - Out2 = Excess2 + offset2

 …

All inputs

All outputs

Range proof for outputs

All excesses

Schnorr Signatures for outputs

MimbleWimble Block

Verify via
sum(inputs)-sum(outputs)

=
 sum(excess) + offset

Offset

Efficiency Gains

• If

• A sends money to B

• B sends money to C

• we don’t need to store any information about B

Cut Through
• Given 2 transactions

•

•

• is also
valid

• Only final inputs and outputs need to be published

T1 = A + B + C − D − E

T2 = D + G + H − J − K

T1 + T2 = A + B + C + G + H − E − J − K

output used directly as input for another tx

MimbleWimble

• The 2 popular implementations use proof-of-work

• ASIC resistance through algorithms that use a lot of
memory

• Mining Fees are special transactions added to each block

• Similar to bitcoin

Dandelion Anonymity

Verifying the entire MW
state

• The total amount of coins created by mining in the chain.

• Easy: #block * mining_reward_per_block

• The complete set of unspent outputs

• A Pedersen Commitment is a group element (64 bit)

• The transactions signatures for each transaction

• Signature is (number, group element)-tuple (96 bits)

• Range proof ~ 1.5kb

Verifying the entire MW
state

• The transactions signatures for each transaction contain the entire
history

• Contains information about every coin, even long after the coin
was spend

• Grows over time

• Consider 2 Schnorr signatures

• (, rG)

• (, qG)

• Can not be combined without interaction

• Transaction signatures can not be compressed

r + ℋ(rG |pG | text)p
m + ℋ(mG |qG | text)q

Future of MimbleWimble

• Alternative signature scheme (BLS)

•

• We can compress all transaction signatures of the past
in one signature

• Verifying one signature is sufficient to proof that
throughout the entire history, all transactions were correct

Ssum = S1 + S2

