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Overview
• Zero-Knowledge 


• Proving a property about an element without revealing


• Lelantus


• ZCoin’s Zero-Knowledge protocol


• Prove that transactions are valid, without revealing 
anything



Zero-Knowledge Proofs (ZKP)
• A proof about a property without revealing it


• Zero-Knowledge is not magic


• We have already seen several instances of ZKP


• Signatures are ZK proofs of knowing the secret key


• In ECC, the secret key  is the discrete logarithm of 
the public key 


• Also called proof of knowledge of discrete logarithm

a
A = aG



Zero-Knowledge Proofs (ZKP)

• Another example we saw:


• Pedersen Commitment 


• We can proof that  without revealing  by using 
as public key in a signature 


• Those techniques are called Non-Interactive Signature-
based Proof-of-Knowledge (NI SPK)

X = aG + λH

a = 0 λ X
(s, R), sH = R + ℋ( . . . )X



Zero-Knowledge Proofs (ZKP)
• A more general approach is the so called -protocol


• A three way protocol
Σ

Alice


some value 


compute  for

some function 


b

f(b, r)
f

Bob


random 


Accepts if conditions are 
met

r c = commit(b)

r

 f(b, r)



Zero-Knowledge Proofs (ZKP)
• A Zero-Knowledge -protocol to show knowledge of 

discrete logarithm of 
Σ

P = pG
Alice, knows 


random value 

Commit via ECC Point


compute




p
r

f(r, c, p) = s = r + cp

Bob, knows 


random challenge 


Accepts if


P

c

sG ?= R + cP

 R = rG

c

 s



Zero-Knowledge Proofs (ZKP)
• A Zero-Knowledge -protocol to show knowledge of 

discrete logarithm of 
Σ

P = pG
Alice, knows 


random value 

Commit via ECC Point


compute




p
r

f(r, c, p) = s = r + cp

Bob, knows 


random challenge 


Accepts if


P

c

sG ?= R + cP

 R = rG

c

 s

Same formula as Schnorr Signature



Zero-Knowledge Proofs (ZKP)
• A Zero-Knowledge -protocol to show knowledge of 

discrete logarithm of 
Σ

P = pG
Alice, knows 


random value , commit via ECC Point 


challenge  is a hash using input : 


With , the Schnorr Signature is 


 Hashes can be used to transform an interactive Zero Knowledge 
proof into a non-interactive proof


p

r R = rG

c R, P c = ℋ(R |P)

s = r + cp = r + ℋ( . . . )p (s, R)

⇒



Zero-Knowledge Proofs (ZKP)

• Zero-knowledge proofs are often shown as -protocol


1. Commit some value


2. accept a challenge


3. send a function


• With a hash it can be turned into a Non-Interactive proof

Σ



-protocol for Pedersen 
commit as 0 or 1

Σ

• Assume we have a Pedersen Commitment 


• Before, we have seen a ZKP to show that 


• Now, we look at a ZKP to show that  

X = aG + λH

a = 0

a = 0 or a = 1



-protocol for Pedersen 
commit as 0 or 1

Σ

• A ZKP to show that  


• How can that work?

a = 0 or a = 1



-protocol for Pedersen 
commit as 0 or 1

Σ

• A ZKP to show that  


• How can that work?


• The one thing  have in common:


• We proof that 

a = 0 or a = 1

a = 0 and a = 1

a(1 − a) = 0



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Step 1

• Alice (knows )


• generates random 


• commit and send 


• 

•

C = mG + rH

a, s, t ∈ ℤ

ca = aG + sH
cb = (am)G + tH

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Step 1

• 

•

ca = aG + sH
cb = (am)G + tH

, proof C = mG + rH m ∈ {0,1}

Step 2

                 send challenge 

x← x



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Step 1

• 

•      


                 Step 2: random 

Step 3




                              


ca = aG + sH
cb = (am)G + tH

x← x

f = mx + a
za = rx + s

f,za,zb→
zb = r(x − f ) + t

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Step 1

• 

•      


                 Step 2: random 

Step 3




                                      Accept if and only if:


                                     


ca = aG + sH
cb = (am)G + tH

x← x

f = mx + a
za = rx + s

f,za,zb→
zb = r(x − f ) + t xC + ca = fG + zaH

(x − f) C + cb = 0G + zbH

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Alice sends

                              


                                           


Bob verifies:     


 

 

 


 

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f ) + t

xC + ca
?= fG + zaH

xC + ca = x(mG + rH) + (aG + sH)
= xmG + aG + xrH + sH
= (xm + a)G + (xr + s) H

= fG + zaH

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Alice sends

                              


                                           


Bob verifies:     


• We do not make any assumption about 


• 


• If , we know that  

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f ) + t

xC + ca
?= fG + zaH

a, s
xC + ca = (mx + a)G + (…)H

xC + ca = fG + (…)H f = mx + a

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Alice sends

                              


                                           


Bob verifies:     


• now we test  property via


 


ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f ) + t

(x − f) C + cb
?= 0G + zbH

m(1 − m) = 0

(x − f) C + cb = (x − (mx + a)) C + cb

= (x − (mx + a))(mG + rH) + cb

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

 








 


 





 

(x − f) C + cb = (x − (mx + a)) C + cb

= (x − (mx + a))(mG + rH) + cb

= (x − (mx + a)) mG + (x − f )rH + cb

= (xm − m2x − ma)G + (x − f )rH + (amG + tH)
= (xm − m2x)G + (x − f )rH + tH
= xm(1 − m)G + (r(x − f ) + t) H

?= 0G + zbH

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Alice sends

                              


                                           


Bob verifies:     


• now we test  property via


 


ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f ) + t

(x − f) C + cb
?= 0G + zbH

m(1 − m) = 0

(x − f) C + cb = 0G + (…)H

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

Alice sends

                              


                                           


Bob verifies:    


• if  and 


• then:  and , regardless of 


• Thus we know that 

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f ) + t

xC + ca = fG + zaH (x − f) C + cb = 0G + zbH

f = mx + a xm(1 − m) = 0 x
m ∈ {0,1}

, proof C = mG + rH m ∈ {0,1}



-protocol for Pedersen 
Commitment as 0 or 1

Σ

• Wy do we do this?


• It is very very cool!


• We can use this as building block for more complex 
proofs


• 1-in-N -protocolsΣ



1-in-N ProtocolΣ−
• Assume we have a set of Pedersen Commitments given


• , 


• each  has


• amount 


• randomness  as blinding value

{X1, X2, …, Xn}

Xi = miG + riH

mi

ri



1-in-N ProtocolΣ−

• Assume we have a set of Pedersen Commitments given


• , each 


• Assume we know 


• We want to prove that we know one of the 

{X1, X2, …, Xn} Xi = miG + riH

Xt = mtG + rtH

Xi



1-in-N ProtocolΣ−
• Given:


• , , 


• We want to prove that we know one of the 


• Publish related Pedersen Commitment 


• Verifier subtracts  from all Pedersen Commitments


• Proof is now: 1 in  is 


• Technial term: opens to 0

{X1, X2, …, Xn} Xi = miG + riH Xt = mtG + rtH

Xi

Y = mtG + sH

Y

{X1 − Y, X2 − Y, …, Xn − Y} 0G + (…)H



1-in-N ProtocolΣ−

• New Problem:


• , , 


• We want to prove that one of the  opens to 0

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

Yi



1-in-N ProtocolΣ−
• New Problem:


• , , 


• We want to prove that one of the  opens to 0


• Idea:


• show that  opens to 0


• show that each  is either 0 or 1


• show that  is 1

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

Yi

c1Y1 + c2Y2 + … + cnYn

ci

∑ ci



1-in-N ProtocolΣ−

• New Problem:


• , , 


• given 


• show that each  is either 0 or 1


• if  is a number, we reveal the secret 


• if  is a group element, we don’t know what  means

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

c1Y1 + c2Y2 + … + cnYn

ci

c
c ciYi



1-in-N ProtocolΣ−

• Look at previous proof:


•  consider 


• Contains the value 


• since  is secret, knowing  doesn’t reveal 

f = mx + a

m ∈ {0,1}

a, m f m

Alice sends

                              


                                           


Bob verifies:    


• if  and 


• then:  and , regardless of 


• Thus we know that 

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f ) + t

xC + ca = fG + zaH (x − f) C + cb = 0G + zbH

f = mx + a xm(1 − m) = 0 x
m ∈ {0,1}



1-in-N ProtocolΣ−

• New Problem:


• , , 


• given 


• Conduct N parallel  protocols for 


• That gives a proof that 

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

Σ fi = mixi + ai

mi ∈ {0,1}



1-in-N ProtocolΣ−
• New Problem:


• , , 


• now we have 


 


{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn



1-in-N ProtocolΣ−
• New Problem:


• , , 


• now we have 


 





{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

= (m1x + a1)Y1 + (m2x + a2)Y2 + … + (mnx + an)Yn



1-in-N ProtocolΣ−
• New Problem:


• , , 


• now we have 


 





 

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

= (m1x + a1)Y1 + (m2x + a2)Y2 + … + (mnx + an)Yn

= mkxYk + ∑ akYk



1-in-N ProtocolΣ−
• New Problem:


• , , 


• but now we have 


 





 

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

= (m1x + a1)Y1 + (m2x + a2)Y2 + … + (mnx + an)Yn

= mkxYk + ∑ akYk
Opens to 0 independent of x, 


can be send beforehand

in a Pedersen Commitment



1-in-N ProtocolΣ−
New Problem:


• , , 


Proof:


   opens to 0


• Doable, but not very efficient


• n is the size of the anonymity set


• We can do better

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn = mkxYk + ∑ akYk



1-in-N ProtocolΣ−

Summary:


• A efficient, but slightly complicated, protocol


• We can show that we know an index  of an element in 
the anonymity that opens to 0, i.e. 

t
Yt = 0G + stH



Building a cryptocurrency

We need 


• A way to store the amount


• A way to prevent double spending (an ID, or serial#)


• A blinding factor for anonymity



Pedersen Commitment

• A Pedersen Commitment  can store one 
secret value


• We need to store 2 secret values (the amount and serial#)

X = aG + rH



Pedersen Commitment

• A Pedersen Commitment  can store one 
secret value


• We need to store 2 secret values (the amount and serial#)


 

X = aG + rH

X = aG + sH + γF

amount
serial#

blinding factor



Spending a Coin

• Node publish serial#  ( in plaintext) and anonymity set


• Validator can verify whether this serial numbers has been 
used before


• Validator creates 


• Node publishes a 1-in-N proof that one of the  opens to 
0, i.e. 

z

𝒮 = {Xi − zG |Xi in anonymity set}

Xi
Xi = aG + 0H + γF



Efficiency comparison



Lelantus 
• Coins are Pedersen Commitments

• Value, Serial number, blinding factor X = vG + sH + γF

Plaintext coins

hidden coins (Pedersen Commitments)

Mint Spend

JoinSplit



Lelantus Mint

• Delete a plaintext coin, create a hidden coin

• Hidden Coins: 


• Publish a coin + proof that the value of the coin

• Proof of knowledge of discrete logarithm





E.g. , so that

 

X = vG + sH + γF

X − vG = sH + γF

(c, d, α)
c = ℋ (G |H |F |c(X − vG) + dH + αF)

no correcting term for , thus

this term does not contain any 

G
G



Leleantus Spend

• Simply open the commitment  to show that 


 


• Amount  will be deposited to your account, ready to use

(v, s, γ)

X = vG + sH + γF

v



Leleantus JoinSplit
• Similarly to MimbleWimble transactions:





1. For every input, present a 1-in-N -protocol


• publish Serial #, 1-in-N proof provides transaction input 


In1 + … + Inn − Out1 − … − Outm − eG⏟
extra output

= 0G + 0H + εF
transaction kernel

Σ

c1⏟
=0

Y1 + c2⏟
=0

Y2 + … + ct
⏟
=1

Yt + … + cn⏟
=0

Yn = Z
⏟

vG+0F+γ′ �F



Leleantus JoinSplit
• Similarly to MimbleWimble transactions:





2.   Proof that transaction kernel only consists of Fs with 
Schnorr Signature


T = In1 + … + Inn − Out1 − … − Outm − eG = 0G + 0H + εF
transaction kernel

(s, R),  so that  sF⏟
only F

= R
⏟

only F

+ ℋ(R |T) T
⏟

only F



Lelantus 
• Coins are Pedersen Commitments

• Value, Serial number, blinding factor X = vG + sH + γF

Plaintext coins

hidden coins (Pedersen Commitments)

Mint Spend

JoinSplit



1-in-N ProtocolΣ−
Efficient encoding of the coefficients



Z{ero}{Coin|Cash}

• ZCash, Zerocoin, ZCoin all work somehow similarly


• 1-in-N proof that someone knows a token


• Double spend prevention via serial number



Z{ero}{Coin|Cash}

ZCoin 


• used Lelantus



Z{ero}{Coin|Cash}

Zerocash


• Uses a Merkle Tree to store hidden coins


• 1-in-N proof is therefore aProof-of-Knowledge about an 
entry in the Merkle Tree


• zk-SNARKS



Z{ero}{Coin|Cash}
Zerocoin (originally only fixed size values )


• Programming bugs, i.e. “=“ vs “==“, or insufficient checks to allow spending the same serial 
number twice


 


• Attack vector: Serial numbers can be chose freely. Bob sees Alice using a serial number, he 
can quickly mint and spend a coin with the same serial number. This makes the coin for 
Alice unusable


• April 2018: A unrecoverable cryptographic problem. Two ZK proofs were used:

• (1) proof of knowledge of a minted coin

• (2) proof of knowledge of a serial number 

• The part that joins these two proofs (that the coin known in (1) is the one with the 

serial#) was flawed


• Original Zerocoin stopped. Complete redo (also using zk-SNARKs) in the making 

X = sH + γF

γF = (γ + grouporder

how many elements in curve

)F



Appendix
Detailed description of the 1-in-N -protocol using the 

binary representation of indices (25 = 00011001)
Σ



1-in-N ProtocolΣ−
• Problem:


• , , 


• Efficient encoding of the coefficients: 


• Proof that you know a value  so that 


 opens to 0


• Assume each index  is given in binary format 

• (i.e. i=0110101)

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

t

c1Y1 + c2Y2 + … + cnYn

i



1-in-N ProtocolΣ−
• New Problem:


• , , 


• Efficient approach: 


• represent the index  in binary form, i.e. 


• for each digit a separate variable 


• Instead of  secret {0,1} coefficients, only 


• Details are more complex, at the end of the lecture (if 
time permits)

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

i t = 11001

c0c1c2c3c4c5

N O(log(N))



Indices
0 1 0 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

Y10

Y17

Y20

Y25

Y27

Y28

An
on

ym
ity

 S
et

Binary Representation

Our Element



Kronecker-Delta
1 1 0 0 1

01010 0 1 1 0 0

10001 1 0 1 1 1

10100 1 0 0 1 0

11001 1 1 1 1 1

11011 1 1 1 0 1

11100 1 1 0 1 0

Y10

Y17

Y20

Y25

Y27

Y28

An
on

ym
ity

 S
et

Binary Representation

Our Element

Y25

Same as our element (1) or not (0)



Kronecker-Delta
1 1 0 0 1 Product

01010 0 1 1 0 0 0

10001 1 0 1 1 1 0

10100 1 0 0 1 0 0

11001 1 1 1 1 1 1

11011 1 1 1 0 1 0

11100 1 1 0 1 0 0

Y10

Y17

Y20

Y25

Y27

Y28

An
on

ym
ity

 S
et

Binary Representation

Our Element

Y25

Product of all numbers in each line



Kronecker-Delta

1 1 0 0 1

10001 1 0 1 1 1

10100 1 0 0 1 0

Y17

Y20

Binary Representation
Y25

δ(3,203)δ(2,202)δ(1,201) δ(4,204) δ(5,205)

δ(3,173)δ(2,172)δ(1,171) δ(4,174) δ(5,175)

Define  as the agreement in the  digit between

• The index of the element we own

• The index of the element in the anonymity set

δ(k, lk) kth



Kronecker-Delta
Define  as the agreement in the  digit between


• The index of the element we own


• The index of the element in the anonymity set


The product of the values in each line 





is the indicator function of our secret element 

δ(k, lk) kth

δl = ∏
k

δ(k, lk) = δ(1,l1) ⋅ δ(2,l2) ⋅ δ(3,l3) ⋅ δ(4,l4) ⋅ δ(5,l5)



Kronecker-Delta
Define  as the agreement in the  digit between

• The index of the element we own

• The index of the element in the anonymity set


The product of the values in each line 





is the indicator function of our secret element. 


•  only for our element 

δ(k, lk) kth

δl = ∏
k

δ(k, lk) = δ(1,l1) ⋅ δ(2,l2) ⋅ δ(3,l3) ⋅ δ(4,l4) ⋅ δ(5,l5)

δl = 1



Kronecker-Delta
Define  as the agreement in the  digit between

• The index of the element we own

• The index of the element in the anonymity set


We need 


•  for the first digit to be 0


•  for the first digit to be 1


•  for the second digit to be 0


•  for the second digit to be 1


•  for the third digit to be 0


•  for the third digit to be 1

• …

δ(k, lk) kth

δ(1,0)
δ(1,1)
δ(2,0)
δ(2,1)
δ(3,0)
δ(3,1)

Number of values:

 O (log(N))



1-in-N ProtocolΣ−

, , 


Given . Show that


1. Each  is 0 or 1


2.  opens to 0

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

δ(k, ik), δl = ∏
k

δ(k, lk)

δl

δ1Y1 + δ2Y2 + … + δnYn



1-in-N ProtocolΣ−
Let’s focus on 


• Using the 0/1 protocol, we hide for each digit the value
 with


 

δl = ∏
k

δ(k, lk)

δ(k,0)

fl,0 = δ(k,0)x + al,0
We have

•   for the first digit to be 0


•  for the second digit to be 0


•  for the third digit to be 0

• …

f0,0
f1,0
f3,0

 is 1 if the digit is 0

 is 0 if the digit is 1

δ(k,0) kth

δ(k,0) kth

We have f0,1 = x − f0,0



1-in-N ProtocolΣ−
Let’s focus on 


• hide 


•  in  


•  in  


Instead of , consider the product 


δl = ∏
k

δ(k, lk)

δ(k,0) fl,0 = δ(k,0)x + al,0

δ(k,1) fl,1 = x − fl,0

δl = ∏
k

δ(k, lk) pl(x) = ∏
k

fk,lk



1-in-N ProtocolΣ−
Let’s focus on 


The product  is


δl = ∏
k

δ(k, lk)

pl(x) = ∏
k

fk,lk

pl(x) = ∏
k

(δ(k, lk)x + ak,lk) = δlxm +
m−1

∑
k

pl,kxk

 is the number

of binary digits

m

 in  

 in  

δ(k,0) fl,0 = δ(k,0)x + al,0
δ(k,1) fl,1 = x − fl,0



1-in-N ProtocolΣ−




• The value  is the secret parameter we need


• 1 for our own element, 0 for everything else

pl(x) = ∏
k

(δ(k, lk)x + ak,lk) = δlxm +
m−1

∑
k

pl,kxk

δl



1-in-N ProtocolΣ−




• The other term  are independent of challenge 


• Can be computed ahead of time


• Can be transmitted as Pedersen Commitments

pl(x) = ∏
k

(δ(k, lk)x + al,k) = δlxm +
m−1

∑
k

pl,kxk

pl,k x



1-in-N ProtocolΣ−
, , 


1. Generate random values  and compute  


       Transmit  (Pedersen Comm)


2. For all  values start a separate -protocol 


• For an anonymity set of 1024, e.g., we need only 10 parallel 0/1 
zero-knowledge proofs


• Results in 


• A commitment for the  digit to be 0

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

ρk pl,k

Qk = ∑
i

pl,kYi + ρkH

δ(k, lk) Σ

fk,0 = δ(k,0)x + ak,0

kth



1-in-N ProtocolΣ−
, , 





3.  Send 


4.  Verifier checks:


 

{Y1, Y2, …, Yn} Yi = miG + siH

Yt = 0G + stH

zd = stxn −
n−1

∑
k

ρkxk

(∏
k

fk,1k) Y1 + (∏
k

fk,2k) Y2 + … + (∏
k

fk,nk) Yn +
n−1

∑
k

x−kQk = 0G + zdH

 is the  or , depending

on whether the  digit of the

second index is 0 or 1

fk,2k
fk,0 fk,1

kth



Complete Description

Multiplicative notation  aG ↦ gaCommitment Comck(x, y) = xG + yH

 is commitment key, i.e. two group elements ck G, H


