Zero-Knowledge Proofs I Lelantus Oct. 16, 2019

Overview

- Zero-Knowledge
 - Proving a property about an element without revealing

- Lelantus
 - ZCoin's Zero-Knowledge protocol
 - Prove that transactions are valid, without revealing anything

- A proof about a property without revealing it
- Zero-Knowledge is not magic
- We have already seen several instances of ZKP
 - Signatures are ZK proofs of knowing the secret key
 - In ECC, the secret key a is the discrete logarithm of the public key A = aG
 - Also called proof of knowledge of discrete logarithm

- Another example we saw:
 - Pedersen Commitment $X = aG + \lambda H$
 - We can proof that a = 0 without revealing λ by using X as public key in a signature $(s, R), sH = R + \mathcal{H}(\ldots)X$

 Those techniques are called Non-Interactive Signaturebased Proof-of-Knowledge (NI SPK)

- A more general approach is the so called $\Sigma\text{-}\mathrm{protocol}$
- A three way protocol

Accepts if conditions are met

- A Zero-Knowledge Σ -protocol to show knowledge of discrete logarithm of P=pG

- A Zero-Knowledge Σ -protocol to show knowledge of discrete logarithm of P=pG

- A Zero-Knowledge Σ -protocol to show knowledge of discrete logarithm of P=pG

<u>Alice</u>, knows p

random value r, commit via ECC Point R = rG

challenge *c* is a hash using input $R, P: c = \mathcal{H}(R | P)$

With $s = r + cp = r + \mathscr{H}(\ldots)p$, the Schnorr Signature is (s, R)

 \Rightarrow Hashes can be used to transform an interactive Zero Knowledge proof into a non-interactive proof

- Zero-knowledge proofs are often shown as Σ -protocol
 - 1. Commit some value
 - 2. accept a challenge
 - 3. send a function
- With a hash it can be turned into a Non-Interactive proof

Σ -protocol for Pedersen commit as 0 or 1

- Assume we have a Pedersen Commitment $X = aG + \lambda H$
- Before, we have seen a ZKP to show that a = 0
- Now, we look at a ZKP to show that a = 0 or a = 1

Σ -protocol for Pedersen commit as 0 or 1

- A ZKP to show that a = 0 or a = 1
 - How can that work?

Σ -protocol for Pedersen commit as 0 or 1

- A ZKP to show that a = 0 or a = 1
 - How can that work?
- The one thing a = 0 and a = 1 have in common:
 - We proof that a(1 a) = 0

Σ -protocol for Pedersen Commitment as 0 or 1

C = mG + rH, proof $m \in \{0,1\}$

<u>Step 1</u>

- Alice (knows C = mG + rH)
- generates random $a, s, t \in \mathbb{Z}$
- commit and send
 - $c_a = aG + sH$
 - $c_b = (am)G + tH$

$\label{eq:scalar} \Sigma \text{-protocol for Pedersen} \\ \text{Commitment as 0 or 1} \\ \end{array}$

C = mG + rH, proof $m \in \{0,1\}$

 $\stackrel{x}{\leftarrow}$

Step 1

- $c_a = aG + sH$
- $c_b = (am)G + tH$

Step 2 send challenge *x*

Σ -protocol for Pedersen Commitment as 0 or 1

C = mG + rH, proof $m \in \{0,1\}$

Step 1

•
$$c_a = aG + sH$$

•
$$c_b = (am)G + tH$$

Step 2: random x

 $\frac{\text{Step 3}}{f = mx + a}$ $z_a = rx + s$ $z_b = r(x - f) + t$

$$\stackrel{f,z_a,z_b}{\rightarrow}$$

 $\stackrel{x}{\leftarrow}$

Σ -protocol for Pedersen Commitment as 0 or 1

C = mG + rH, proof $m \in \{0,1\}$

 $\stackrel{x}{\leftarrow}$

Step 1

•
$$c_a = aG + sH$$

•
$$c_b = (am)G + tH$$

Step 2: random x

 $\frac{\text{Step 3}}{f = mx + a}$ $z_a = rx + s$ $z_b = r(x - f) + t$

 $\begin{array}{l} f_{z_a,z_b} \\ \rightarrow \end{array} \quad \text{Accept if and only if:} \\ xC + c_a = fG + z_a H \\ (x - f) C + c_b = 0G + z_b H \end{array}$

$$\begin{split} & \sum \text{-protocol for Pedersen} \\ & \text{Commitment as 0 or 1} \\ & C = mG + rH, \text{ proof } m \in \{0,1\} \\ \hline \text{Alice sends} \\ & c_a = aG + sH \\ & f = mx + a \\ & z_a = rx + s \\ & z_b = r(x - f) + t \end{split}$$

<u>Bob verifies:</u> $xC + c_a \stackrel{?}{=} fG + z_a H$

$$xC + c_a = x(mG + rH) + (aG + sH)$$

= $xmG + aG + xrH + sH$
= $(xm + a)G + (xr + s)H$
= $fG + z_aH$

Σ -protocol for Pedersen Commitment as 0 or 1 C = mG + rH, proof $m \in \{0,1\}$ Alice sends $c_a = aG + sH$ $c_b = (am)G + tH$ f = mx + a $z_a = rx + s$ $z_b = r(x - f) + t$ <u>Bob verifies:</u> $xC + c_a \stackrel{?}{=} fG + z_a H$

- We do not make any assumption about *a*, *s*
- $xC + c_a = (mx + a)G + (...)H$
- If $xC + c_a = fG + (...)H$, we know that f = mx + a

Σ -protocol for Pedersen Commitment as 0 or 1 C = mG + rH, proof $m \in \{0,1\}$ Alice sends $c_a = aG + sH$ $c_b = (am)G + tH$ f = mx + a $z_a = rx + s$ $z_b = r(x - f) + t$ <u>Bob verifies:</u> $(x - f) C + c_b \stackrel{?}{=} 0G + z_b H$

• now we test m(1 - m) = 0 property via $(x - f) C + c_b = (x - (mx + a)) C + c_b$ $= (x - (mx + a))(mG + rH) + c_b$

Σ -protocol for Pedersen Commitment as 0 or 1 C = mG + rH, proof $m \in \{0,1\}$

 $(x-f) C + c_b = (x - (mx + a)) C + c_b$ $= (x - (mx + a))(mG + rH) + c_h$ $= (x - (mx + a)) mG + (x - f)rH + c_h$ $= (xm - m^{2}x - ma)G + (x - f)rH + (amG + tH)$ $= (xm - m^2x)G + (x - f)rH + tH$ = xm(1-m)G + (r(x-f) + t)H $\stackrel{?}{=} 0G + z_b H$

Σ -protocol for Pedersen Commitment as 0 or 1 C = mG + rH, proof $m \in \{0,1\}$ Alice sends $c_a = aG + sH$ $c_b = (am)G + tH$ f = mx + a $z_a = rx + s$ $z_b = r(x - f) + t$ <u>Bob verifies:</u> $(x - f) C + c_b \stackrel{?}{=} 0G + z_b H$

• now we test m(1 - m) = 0 property via $(x - f) C + c_b = 0G + (...)H$

$\begin{array}{l} \sum \text{-protocol for Pedersen} \\ \text{Commitment as 0 or 1} \\ C = mG + rH, \text{ proof } m \in \{0,1\} \\ \hline \text{Alice sends} \\ c_a = aG + sH \\ f = mx + a \\ z_a = rx + s \\ c_b = (am)G + tH \\ z_b = r(x - f) + t \end{array}$

Bob verifies:

- if $xC + c_a = fG + z_aH$ and $(x f)C + c_b = 0G + z_bH$
- then: f = mx + a and xm(1 m) = 0, regardless of x
- Thus we know that $m \in \{0,1\}$

$\label{eq:scalar} \Sigma \text{-protocol for Pedersen} \\ \text{Commitment as 0 or 1} \\$

- Wy do we do this?
 - It is very very cool!
 - We can use this as building block for more complex proofs
 - 1-in-N Σ -protocols

- Assume we have a set of Pedersen Commitments given
- $\{X_1, X_2, ..., X_n\},$
 - each $X_i = m_i G + r_i H$ has
 - amount m_i
 - randomness r_i as blinding value

- Assume we have a set of Pedersen Commitments given
- { $X_1, X_2, ..., X_n$ }, each $X_i = m_i G + r_i H$
- Assume we know $X_t = m_t G + r_t H$
- We want to prove that we know one of the X_i

- Given:
 - { $X_1, X_2, ..., X_n$ }, $X_i = m_i G + r_i H$, $X_t = m_t G + r_t H$
- We want to prove that we know one of the X_i
- Publish related Pedersen Commitment $Y = m_t G + sH$
- Verifier subtracts Y from all Pedersen Commitments
- Proof is now: 1 in $\{X_1 Y, X_2 Y, ..., X_n Y\}$ is 0G + (...)H
 - Technial term: opens to 0

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- We want to prove that one of the Y_i opens to 0

• New Problem:

• {
$$Y_1, Y_2, ..., Y_n$$
}, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$

- We want to prove that one of the Y_i opens to 0
- Idea:
 - show that $c_1Y_1 + c_2Y_2 + \ldots + c_nY_n$ opens to 0
 - show that each c_i is either 0 or 1
 - show that $\sum c_i$ is 1

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- given $c_1Y_1 + c_2Y_2 + \ldots + c_nY_n$
- show that each c_i is either 0 or 1
 - if *c* is a number, we reveal the secret
 - if c is a group element, we don't know what $c_i Y_i$ means

- Look at previous proof: $if xC + c_i$ • then: $f = t_i$
- consider f = mx + a

Alice sends

$$c_a = aG + sH$$
 $c_b = (am)G + tH$
 $f = mx + a$ $z_a = rx + s$ $z_b = r(x - f) + t$
Bob verifies:
• if $xC + c_a = fG + z_aH$ and $(x - f)C + c_b = 0G + z_bH$
• then: $f = mx + a$ and $xm(1 - m) = 0$, regardless of x
• Thus we know that $m \in \{0,1\}$

- Contains the value $m \in \{0,1\}$
- since a, m is secret, knowing f doesn't reveal m

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- given $f_1Y_1 + f_2Y_2 + \ldots + f_nY_n$
- Conduct N parallel Σ protocols for $f_i = m_i x_i + a_i$
 - That gives a proof that $m_i \in \{0,1\}$

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- now we have

$$f_1Y_1 + f_2Y_2 + \dots + f_nY_n$$

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- now we have

$$f_1Y_1 + f_2Y_2 + \dots + f_nY_n$$

 $= (m_1 x + a_1)Y_1 + (m_2 x + a_2)Y_2 + \dots + (m_n x + a_n)Y_n$

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- now we have

$$f_1Y_1 + f_2Y_2 + \dots + f_nY_n$$

= $(m_1x + a_1)Y_1 + (m_2x + a_2)Y_2 + \dots + (m_nx + a_n)Y_n$
= $m_kxY_k + \sum a_kY_k$

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- but now we have

$$f_1Y_1 + f_2Y_2 + \dots + f_nY_n$$

 $= (m_1 x + a_1)Y_1 + (m_2 x + a_2)Y_2 + \dots + (m_n x + a_n)Y_n$

$$= m_k x Y_k + \sum_{k} a_k Y_k$$
 independent of the second s

independent of x, can be send beforehand in a Pedersen Commitment

New Problem:

• $\{Y_1, Y_2, ..., Y_n\}, Y_i = m_iG + s_iH, Y_t = 0G + s_tH$ Proof:

$$f_1Y_1 + f_2Y_2 + \dots + f_nY_n = m_kxY_k + \sum a_kY_k$$
 opens to 0

- Doable, but not very efficient
 - n is the size of the anonymity set
 - We can do better
Summary:

- A efficient, but slightly complicated, protocol
- We can show that we know an index *t* of an element in the anonymity that opens to 0, i.e. $Y_t = 0G + s_tH$

Building a cryptocurrency

We need

- A way to store the amount
- A way to prevent double spending (an ID, or serial#)
- A blinding factor for anonymity

Pedersen Commitment

- A Pedersen Commitment X = aG + rH can store one secret value
- We need to store 2 secret values (the amount and serial#)

Pedersen Commitment

- A Pedersen Commitment X = aG + rH can store one secret value
- We need to store 2 secret values (the amount and serial#)

$$X = aG + sH + \gamma F$$

amount blinding factor serial#

Spending a Coin

- Node publish serial# z (in plaintext) and anonymity set
- Validator can verify whether this serial numbers has been used before
- Validator creates $\mathcal{S} = \{X_i zG | X_i \text{ in anonymity set}\}$
- Node publishes a 1-in-N proof that one of the X_i opens to 0, i.e. $X_i = aG + 0H + \gamma F$

Efficiency comparison

	Anonymity	Trusted	Cryptographic	Proof	Proof	Verification
	Set Size	Setup	Assumptions	Size(KB)	Time(s)	Time(ms)
Monero	10	No	Well-tested	2.1	1	47
Zerocash	2^{32}	Yes	Relatively New	0.3	1-20	8
Zerocoin	2^13	Yes	Well-tested	25	0.2	200
Lelantus 1	2^{14}	No	Well-tested	1.5	1.2	12 1
Lelantus 2	2^{16}	No	Well-tested	1.5	5.2	35 2

Lelantus

- Coins are Pedersen Commitments
 - Value, Serial number, blinding factor $X = vG + sH + \gamma F$

Lelantus Mint

- Delete a plaintext coin, create a hidden coin
 - Hidden Coins: $X = vG + sH + \gamma F$
- Publish a coin + proof that the value of the coin
 - Proof of knowledge of discrete logarithm

$$X - vG = sH + \gamma F$$

E.g. (c, d, α) , so that $c = \mathscr{H} \left(G |H| F | c(X - vG) + dH + \alpha F \right)$ no correcting term for *G*, thus this term does not contain any *G*

Leleantus Spend

• Simply open the commitment (v, s, γ) to show that

$$X = vG + sH + \gamma F$$

• Amount v will be deposited to your account, ready to use

Leleantus JoinSplit

• Similarly to MimbleWimble transactions:

 $\ln_1 + \dots + \ln_n - \operatorname{Out}_1 - \dots - \operatorname{Out}_m - \underbrace{eG}_{\text{extra output}} = \underbrace{0G + 0H + \varepsilon F}_{\text{transaction kernel}}$

- 1. For every input, present a 1-in-N Σ -protocol
 - publish Serial #, 1-in-N proof provides transaction input

$$\underbrace{c_1}_{=0} Y_1 + \underbrace{c_2}_{=0} Y_2 + \dots + \underbrace{c_t}_{t} Y_t + \dots + \underbrace{c_n}_{=0} Y_n = \underbrace{Z}_{vG+0F+\gamma'F}$$

Leleantus JoinSplit

• Similarly to MimbleWimble transactions:

 $T = \ln_1 + \ldots + \ln_n - \operatorname{Out}_1 - \ldots - \operatorname{Out}_m - eG = \underbrace{0G + 0H + \varepsilon F}_{\text{transaction kernel}}$

2. Proof that transaction kernel only consists of Fs with Schnorr Signature

$$(s, R), \text{ so that } \underline{sF} = \underline{R} + \mathcal{H}(R \mid T) \underline{T}$$

only F only F only F only F

Lelantus

- Coins are Pedersen Commitments
 - Value, Serial number, blinding factor $X = vG + sH + \gamma F$

Efficient encoding of the coefficients

- ZCash, Zerocoin, ZCoin all work somehow similarly
 - 1-in-N proof that someone knows a token
 - Double spend prevention via serial number

ZCoin

• used Lelantus

Zerocash

- Uses a Merkle Tree to store hidden coins
- 1-in-N proof is therefore aProof-of-Knowledge about an entry in the Merkle Tree
 - zk-SNARKS

Zerocoin (originally only fixed size values $X = sH + \gamma F$)

 Programming bugs, i.e. "=" vs "==", or insufficient checks to allow spending the same serial number twice

 $\gamma F = (\gamma + \text{grouporder})F$

how many elements in curve

- Attack vector: Serial numbers can be chose freely. Bob sees Alice using a serial number, he can quickly mint and spend a coin with the same serial number. This makes the coin for Alice unusable
- April 2018: A unrecoverable cryptographic problem. Two ZK proofs were used:
 - (1) proof of knowledge of a minted coin
 - (2) proof of knowledge of a serial number
 - The part that joins these two proofs (that the coin known in (1) is the one with the serial#) was flawed
- Original Zerocoin stopped. Complete redo (also using zk-SNARKs) in the making

Appendix

Detailed description of the 1-in-N Σ -protocol using the binary representation of indices (25 = 00011001)

- Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- Efficient encoding of the coefficients:
 - Proof that you know a value *t* so that

$$c_1 Y_1 + c_2 Y_2 + \ldots + c_n Y_n$$
 opens to 0

- Assume each index i is given in binary format
 - (i.e. i=0110101)

- New Problem:
 - { $Y_1, Y_2, ..., Y_n$ }, $Y_i = m_i G + s_i H$, $Y_t = 0G + s_t H$
- Efficient approach:
 - represent the index i in binary form, i.e. t = 11001
 - for each digit a separate variable $c_0c_1c_2c_3c_4c_5$
 - Instead of N secret {0,1} coefficients, only $O(\log(N))$
 - Details are more complex, at the end of the lecture (if time permits)

Indices

Binary Representation

		<i>Y</i> ₁₀	0	1	0	1	0			
A CONTRACTOR		<i>Y</i> ₁₇	1	0	0	0	1			
	Ś	<i>Y</i> ₂₀	1	0	1	0	0			
		<i>Y</i> ₂₅	1	1	0	0	1			
		<i>Y</i> ₂₇	1	1	0	1	1			
		<i>Y</i> ₂₈	1	1	1	0	0			
		Our Element								

Binary Representation

Binary Representation

Anonymity Set

Define $\delta(k, l_k)$ as the agreement in the k^{th} digit between

- The index of the element we own
- The index of the element in the anonymity set

Define $\delta(k, l_k)$ as the agreement in the k^{th} digit between

- The index of the element we own
- The index of the element in the anonymity set

The product of the values in each line

$$\delta_l = \prod_k \delta(k, l_k) = \delta(1, l_1) \cdot \delta(2, l_2) \cdot \delta(3, l_3) \cdot \delta(4, l_4) \cdot \delta(5, l_5)$$

is the indicator function of our secret element

Define $\delta(k, l_k)$ as the agreement in the k^{th} digit between

- The index of the element we own
- The index of the element in the anonymity set

The product of the values in each line

$$\delta_l = \prod_k \delta(k, l_k) = \delta(1, l_1) \cdot \delta(2, l_2) \cdot \delta(3, l_3) \cdot \delta(4, l_4) \cdot \delta(5, l_5)$$

is the indicator function of our secret element.

•
$$\delta_l = 1$$
 only for our element

Define $\delta(k, l_k)$ as the agreement in the k^{th} digit between

- The index of the element we own
- The index of the element in the anonymity set

We need

- $\delta(1,0)$ for the first digit to be 0
- $\delta(1,1)$ for the first digit to be 1
- $\delta(2,0)$ for the second digit to be 0
- $\delta(2,1)$ for the second digit to be 1
- $\delta(3,0)$ for the third digit to be 0
- $\delta(3,1)$ for the third digit to be 1

Number of values: $O\left(\log(N)\right)$

$$\{Y_1, Y_2, \dots, Y_n\}, Y_i = m_i G + s_i H, Y_t = 0G + s_t H$$

Given $\delta(k, i_k), \ \delta_l = \prod_k \delta(k, l_k)$. Show that

1. Each δ_l is 0 or 1

2. $\delta_1 Y_1 + \delta_2 Y_2 + \ldots + \delta_n Y_n$ opens to 0

Let's focus on
$$\delta_l = \prod_k \delta(k, l_k)$$

• Using the 0/1 protocol, we hide for each digit the value $\delta(k,0)$ with

$$f_{l,0} = \delta(k,0)x + a_{l,0}$$

We have

. . .

- $f_{0,0}$ for the first digit to be 0
- $f_{1,0}$ for the second digit to be 0
- $f_{3,0}$ for the third digit to be 0

 $\delta(k,0)$ is 1 if the k^{th} digit is 0 $\delta(k,0)$ is 0 if the k^{th} digit is 1

We have
$$f_{0,1} = x - f_{0,0}$$

Let's focus on
$$\delta_l = \prod_k \delta(k, l_k)$$

• hide

•
$$\delta(k,0)$$
 in $f_{l,0} = \delta(k,0)x + a_{l,0}$

•
$$\delta(k,1)$$
 in $f_{l,1} = x - f_{l,0}$

Instead of
$$\delta_l = \prod_k \delta(k, l_k)$$
, consider the product $p_l(x) = \prod_k f_{k, l_k}$

Let's focus on
$$\delta_l = \prod_k \delta(k, l_k)$$

 $\delta(k,0) \text{ in } f_{l,0} = \delta(k,0)x + a_{l,0}$ $\delta(k,1) \text{ in } f_{l,1} = x - f_{l,0}$

The product
$$p_l(x) = \prod_k f_{k,l_k}$$
 is
 $p_l(x) = \prod_k \left(\delta(k, l_k)x + a_{k,l_k}\right) = \delta_l x^m + \sum_k^{m-1} p_{l,k} x^k$

$$p_l(x) = \prod_k \left(\delta(k, l_k)x + a_{k, l_k}\right) = \delta_l x^m + \sum_k^{m-1} p_{l, k} x^k$$

- The value δ_l is the secret parameter we need
 - 1 for our own element, 0 for everything else

$$p_{l}(x) = \prod_{k} \left(\delta(k, l_{k}) x + a_{l,k} \right) = \delta_{l} x^{m} + \sum_{k}^{m-1} \rho_{l,k} x^{k}$$

- The other term $p_{l,k}$ are independent of challenge x
 - Can be computed ahead of time
 - Can be transmitted as Pedersen Commitments

- $\{Y_1, Y_2, \dots, Y_n\}, Y_i = m_i G + s_i H, Y_t = 0G + s_t H$
- 1. Generate random values ρ_k and compute $p_{l,k}$

Transmit
$$Q_k = \sum_i p_{l,k} Y_i + \rho_k H$$
 (Pedersen Comm)

- 2. For all $\delta(k, l_k)$ values start a separate Σ -protocol
 - For an anonymity set of 1024, e.g., we need only 10 parallel 0/1 zero-knowledge proofs

• Results in
$$f_{k,0} = \delta(k,0)x + a_{k,0}$$

• A commitment for the k^{th} digit to be 0

 $\{Y_1, Y_2, \dots, Y_n\}, Y_i = m_i G + s_i H,$ $f_{k,2_k}$ is the $f_{k,0}$ or $f_{k,1}$, depending $Y_t = 0G + s_t H$ on whether the k^{th} digit of the 3. Send $z_d = s_t x^n - \sum_{k=1}^{n-1} \rho_k x^k$ second index is 0 or 1 4. Verifier checks: $\left(\prod_{i} f_{k,1_{k}}\right)Y_{1} + \left(\prod_{i} f_{k,2_{k}}\right)Y_{2} + \dots + \left(\prod_{i} f_{k,n_{k}}\right)Y_{n} + \sum_{i}^{n-1} x^{-k}Q_{k} = 0G + z_{d}H$

Complete Description

ck is commitment key, i.e. two group elements G, H

$$\begin{array}{c} \mathcal{P}(ck, (c_0, \dots, c_{N-1}), (\ell, r)) & \mathcal{V}(ck, (c_0, \dots, c_{N-1}))) \\ \text{For } j = 1, \dots, n \\ r_j, a_j, s_j, t_j, \rho_k \leftarrow \mathbb{Z}_q \\ c_{\ell_j} = \operatorname{Com}_{ck}(\ell_j; r_j) \\ c_{a_j} = \operatorname{Com}_{ck}(a_j; s_j) & c_{\ell_1}, c_{a_1}, c_{b_1}, c_{d_0}, \dots, \\ c_{b_j} \leftarrow \operatorname{Com}_{ck}(\ell_j a_j; t_j) & \underline{c_{\ell_n}, c_{a_n}, c_{b_n}, c_{d_{n-1}}} \\ \text{sc}_{d_k} = \prod_i c_i^{p_{i,k}} \operatorname{Com}_{ck}(0; \rho_k) & c_{\ell_1}, c_{a_1}, c_{b_1}, c_{d_0}, \dots, \\ using k = j - 1 & f_1, \dots, z_d \in \mathbb{Z}_q \\ \text{and } p_{i,k} \text{ from } (1) & \underline{x \leftarrow \{0, 1\}^{\lambda}} \\ \text{For } j = 1, \dots, n & f_1, z_{a_1}, z_{b_1}, \dots, \\ f_j = \ell_j x + a_j & f_n, z_{a_n}, z_{b_n}, z_d \\ z_{a_j} = r_j (x - f_j) + t_j & using f_{j,1} = f_j \\ z_d = rx^n - \sum_{k=0}^{n-1} \rho_k x^k & and f_{j,0} = x - f_j \end{array}$$

Commitment $Com_{ck}(x, y) = xG + yH$

Multiplicative notation $aG \mapsto g^a$