
Zero-Knowledge Proofs I
Lelantus

Oct. 16, 2019

Overview
• Zero-Knowledge

• Proving a property about an element without revealing

• Lelantus

• ZCoin’s Zero-Knowledge protocol

• Prove that transactions are valid, without revealing
anything

Zero-Knowledge Proofs (ZKP)
• A proof about a property without revealing it

• Zero-Knowledge is not magic

• We have already seen several instances of ZKP

• Signatures are ZK proofs of knowing the secret key

• In ECC, the secret key is the discrete logarithm of
the public key

• Also called proof of knowledge of discrete logarithm

a
A = aG

Zero-Knowledge Proofs (ZKP)

• Another example we saw:

• Pedersen Commitment

• We can proof that without revealing by using
as public key in a signature

• Those techniques are called Non-Interactive Signature-
based Proof-of-Knowledge (NI SPK)

X = aG + λH

a = 0 λ X
(s, R), sH = R + ℋ(. . .)X

Zero-Knowledge Proofs (ZKP)
• A more general approach is the so called -protocol

• A three way protocol
Σ

Alice

some value

compute for

some function

b

f(b, r)
f

Bob

random

Accepts if conditions are
met

r c = commit(b)

r

 f(b, r)

Zero-Knowledge Proofs (ZKP)
• A Zero-Knowledge -protocol to show knowledge of

discrete logarithm of
Σ

P = pG
Alice, knows

random value

Commit via ECC Point

compute

p
r

f(r, c, p) = s = r + cp

Bob, knows

random challenge

Accepts if

P

c

sG ?= R + cP

 R = rG

c

 s

Zero-Knowledge Proofs (ZKP)
• A Zero-Knowledge -protocol to show knowledge of

discrete logarithm of
Σ

P = pG
Alice, knows

random value

Commit via ECC Point

compute

p
r

f(r, c, p) = s = r + cp

Bob, knows

random challenge

Accepts if

P

c

sG ?= R + cP

 R = rG

c

 s

Same formula as Schnorr Signature

Zero-Knowledge Proofs (ZKP)
• A Zero-Knowledge -protocol to show knowledge of

discrete logarithm of
Σ

P = pG
Alice, knows

random value , commit via ECC Point

challenge is a hash using input :

With , the Schnorr Signature is

 Hashes can be used to transform an interactive Zero Knowledge
proof into a non-interactive proof

p

r R = rG

c R, P c = ℋ(R |P)

s = r + cp = r + ℋ(. . .)p (s, R)

⇒

Zero-Knowledge Proofs (ZKP)

• Zero-knowledge proofs are often shown as -protocol

1. Commit some value

2. accept a challenge

3. send a function

• With a hash it can be turned into a Non-Interactive proof

Σ

-protocol for Pedersen
commit as 0 or 1

Σ

• Assume we have a Pedersen Commitment

• Before, we have seen a ZKP to show that

• Now, we look at a ZKP to show that

X = aG + λH

a = 0

a = 0 or a = 1

-protocol for Pedersen
commit as 0 or 1

Σ

• A ZKP to show that

• How can that work?

a = 0 or a = 1

-protocol for Pedersen
commit as 0 or 1

Σ

• A ZKP to show that

• How can that work?

• The one thing have in common:

• We proof that

a = 0 or a = 1

a = 0 and a = 1

a(1 − a) = 0

-protocol for Pedersen
Commitment as 0 or 1

Σ

Step 1

• Alice (knows)

• generates random

• commit and send

•

•

C = mG + rH

a, s, t ∈ ℤ

ca = aG + sH
cb = (am)G + tH

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Step 1

•

•

ca = aG + sH
cb = (am)G + tH

, proof C = mG + rH m ∈ {0,1}

Step 2

 send challenge

x← x

-protocol for Pedersen
Commitment as 0 or 1

Σ

Step 1

•

•

 Step 2: random

Step 3

ca = aG + sH
cb = (am)G + tH

x← x

f = mx + a
za = rx + s

f,za,zb→
zb = r(x − f) + t

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Step 1

•

•

 Step 2: random

Step 3

 Accept if and only if:

ca = aG + sH
cb = (am)G + tH

x← x

f = mx + a
za = rx + s

f,za,zb→
zb = r(x − f) + t xC + ca = fG + zaH

(x − f) C + cb = 0G + zbH

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Alice sends

Bob verifies:

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f) + t

xC + ca
?= fG + zaH

xC + ca = x(mG + rH) + (aG + sH)
= xmG + aG + xrH + sH
= (xm + a)G + (xr + s) H

= fG + zaH

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Alice sends

Bob verifies:

• We do not make any assumption about

•

• If , we know that

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f) + t

xC + ca
?= fG + zaH

a, s
xC + ca = (mx + a)G + (…)H

xC + ca = fG + (…)H f = mx + a

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Alice sends

Bob verifies:

• now we test property via

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f) + t

(x − f) C + cb
?= 0G + zbH

m(1 − m) = 0

(x − f) C + cb = (x − (mx + a)) C + cb

= (x − (mx + a))(mG + rH) + cb

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

(x − f) C + cb = (x − (mx + a)) C + cb

= (x − (mx + a))(mG + rH) + cb

= (x − (mx + a)) mG + (x − f)rH + cb

= (xm − m2x − ma)G + (x − f)rH + (amG + tH)
= (xm − m2x)G + (x − f)rH + tH
= xm(1 − m)G + (r(x − f) + t) H

?= 0G + zbH

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Alice sends

Bob verifies:

• now we test property via

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f) + t

(x − f) C + cb
?= 0G + zbH

m(1 − m) = 0

(x − f) C + cb = 0G + (…)H

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

Alice sends

Bob verifies:

• if and

• then: and , regardless of

• Thus we know that

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f) + t

xC + ca = fG + zaH (x − f) C + cb = 0G + zbH

f = mx + a xm(1 − m) = 0 x
m ∈ {0,1}

, proof C = mG + rH m ∈ {0,1}

-protocol for Pedersen
Commitment as 0 or 1

Σ

• Wy do we do this?

• It is very very cool!

• We can use this as building block for more complex
proofs

• 1-in-N -protocolsΣ

1-in-N ProtocolΣ−
• Assume we have a set of Pedersen Commitments given

• ,

• each has

• amount

• randomness as blinding value

{X1, X2, …, Xn}

Xi = miG + riH

mi

ri

1-in-N ProtocolΣ−

• Assume we have a set of Pedersen Commitments given

• , each

• Assume we know

• We want to prove that we know one of the

{X1, X2, …, Xn} Xi = miG + riH

Xt = mtG + rtH

Xi

1-in-N ProtocolΣ−
• Given:

• , ,

• We want to prove that we know one of the

• Publish related Pedersen Commitment

• Verifier subtracts from all Pedersen Commitments

• Proof is now: 1 in is

• Technial term: opens to 0

{X1, X2, …, Xn} Xi = miG + riH Xt = mtG + rtH

Xi

Y = mtG + sH

Y

{X1 − Y, X2 − Y, …, Xn − Y} 0G + (…)H

1-in-N ProtocolΣ−

• New Problem:

• , ,

• We want to prove that one of the opens to 0

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

Yi

1-in-N ProtocolΣ−
• New Problem:

• , ,

• We want to prove that one of the opens to 0

• Idea:

• show that opens to 0

• show that each is either 0 or 1

• show that is 1

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

Yi

c1Y1 + c2Y2 + … + cnYn

ci

∑ ci

1-in-N ProtocolΣ−

• New Problem:

• , ,

• given

• show that each is either 0 or 1

• if is a number, we reveal the secret

• if is a group element, we don’t know what means

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

c1Y1 + c2Y2 + … + cnYn

ci

c
c ciYi

1-in-N ProtocolΣ−

• Look at previous proof:

• consider

• Contains the value

• since is secret, knowing doesn’t reveal

f = mx + a

m ∈ {0,1}

a, m f m

Alice sends

Bob verifies:

• if and

• then: and , regardless of

• Thus we know that

ca = aG + sH cb = (am)G + tH
f = mx + a za = rx + s zb = r(x − f) + t

xC + ca = fG + zaH (x − f) C + cb = 0G + zbH

f = mx + a xm(1 − m) = 0 x
m ∈ {0,1}

1-in-N ProtocolΣ−

• New Problem:

• , ,

• given

• Conduct N parallel protocols for

• That gives a proof that

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

Σ fi = mixi + ai

mi ∈ {0,1}

1-in-N ProtocolΣ−
• New Problem:

• , ,

• now we have

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

1-in-N ProtocolΣ−
• New Problem:

• , ,

• now we have

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

= (m1x + a1)Y1 + (m2x + a2)Y2 + … + (mnx + an)Yn

1-in-N ProtocolΣ−
• New Problem:

• , ,

• now we have

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

= (m1x + a1)Y1 + (m2x + a2)Y2 + … + (mnx + an)Yn

= mkxYk + ∑ akYk

1-in-N ProtocolΣ−
• New Problem:

• , ,

• but now we have

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn

= (m1x + a1)Y1 + (m2x + a2)Y2 + … + (mnx + an)Yn

= mkxYk + ∑ akYk
Opens to 0 independent of x,

can be send beforehand

in a Pedersen Commitment

1-in-N ProtocolΣ−
New Problem:

• , ,

Proof:

 opens to 0

• Doable, but not very efficient

• n is the size of the anonymity set

• We can do better

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

f1Y1 + f2Y2 + … + fnYn = mkxYk + ∑ akYk

1-in-N ProtocolΣ−

Summary:

• A efficient, but slightly complicated, protocol

• We can show that we know an index of an element in
the anonymity that opens to 0, i.e.

t
Yt = 0G + stH

Building a cryptocurrency

We need

• A way to store the amount

• A way to prevent double spending (an ID, or serial#)

• A blinding factor for anonymity

Pedersen Commitment

• A Pedersen Commitment can store one
secret value

• We need to store 2 secret values (the amount and serial#)

X = aG + rH

Pedersen Commitment

• A Pedersen Commitment can store one
secret value

• We need to store 2 secret values (the amount and serial#)

X = aG + rH

X = aG + sH + γF

amount
serial#

blinding factor

Spending a Coin

• Node publish serial# (in plaintext) and anonymity set

• Validator can verify whether this serial numbers has been
used before

• Validator creates

• Node publishes a 1-in-N proof that one of the opens to
0, i.e.

z

𝒮 = {Xi − zG |Xi in anonymity set}

Xi
Xi = aG + 0H + γF

Efficiency comparison

Lelantus
• Coins are Pedersen Commitments

• Value, Serial number, blinding factor X = vG + sH + γF

Plaintext coins

hidden coins (Pedersen Commitments)

Mint Spend

JoinSplit

Lelantus Mint

• Delete a plaintext coin, create a hidden coin

• Hidden Coins:

• Publish a coin + proof that the value of the coin

• Proof of knowledge of discrete logarithm

E.g. , so that

X = vG + sH + γF

X − vG = sH + γF

(c, d, α)
c = ℋ (G |H |F |c(X − vG) + dH + αF)

no correcting term for , thus

this term does not contain any

G
G

Leleantus Spend

• Simply open the commitment to show that

• Amount will be deposited to your account, ready to use

(v, s, γ)

X = vG + sH + γF

v

Leleantus JoinSplit
• Similarly to MimbleWimble transactions:

1. For every input, present a 1-in-N -protocol

• publish Serial #, 1-in-N proof provides transaction input

In1 + … + Inn − Out1 − … − Outm − eG⏟
extra output

= 0G + 0H + εF
transaction kernel

Σ

c1⏟
=0

Y1 + c2⏟
=0

Y2 + … + ct
⏟
=1

Yt + … + cn⏟
=0

Yn = Z
⏟

vG+0F+γ′ �F

Leleantus JoinSplit
• Similarly to MimbleWimble transactions:

2. Proof that transaction kernel only consists of Fs with
Schnorr Signature

T = In1 + … + Inn − Out1 − … − Outm − eG = 0G + 0H + εF
transaction kernel

(s, R), so that sF⏟
only F

= R
⏟

only F

+ ℋ(R |T) T
⏟

only F

Lelantus
• Coins are Pedersen Commitments

• Value, Serial number, blinding factor X = vG + sH + γF

Plaintext coins

hidden coins (Pedersen Commitments)

Mint Spend

JoinSplit

1-in-N ProtocolΣ−
Efficient encoding of the coefficients

Z{ero}{Coin|Cash}

• ZCash, Zerocoin, ZCoin all work somehow similarly

• 1-in-N proof that someone knows a token

• Double spend prevention via serial number

Z{ero}{Coin|Cash}

ZCoin

• used Lelantus

Z{ero}{Coin|Cash}

Zerocash

• Uses a Merkle Tree to store hidden coins

• 1-in-N proof is therefore aProof-of-Knowledge about an
entry in the Merkle Tree

• zk-SNARKS

Z{ero}{Coin|Cash}
Zerocoin (originally only fixed size values)

• Programming bugs, i.e. “=“ vs “==“, or insufficient checks to allow spending the same serial
number twice

• Attack vector: Serial numbers can be chose freely. Bob sees Alice using a serial number, he
can quickly mint and spend a coin with the same serial number. This makes the coin for
Alice unusable

• April 2018: A unrecoverable cryptographic problem. Two ZK proofs were used:

• (1) proof of knowledge of a minted coin

• (2) proof of knowledge of a serial number

• The part that joins these two proofs (that the coin known in (1) is the one with the

serial#) was flawed

• Original Zerocoin stopped. Complete redo (also using zk-SNARKs) in the making

X = sH + γF

γF = (γ + grouporder

how many elements in curve

)F

Appendix
Detailed description of the 1-in-N -protocol using the

binary representation of indices (25 = 00011001)
Σ

1-in-N ProtocolΣ−
• Problem:

• , ,

• Efficient encoding of the coefficients:

• Proof that you know a value so that

 opens to 0

• Assume each index is given in binary format

• (i.e. i=0110101)

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

t

c1Y1 + c2Y2 + … + cnYn

i

1-in-N ProtocolΣ−
• New Problem:

• , ,

• Efficient approach:

• represent the index in binary form, i.e.

• for each digit a separate variable

• Instead of secret {0,1} coefficients, only

• Details are more complex, at the end of the lecture (if
time permits)

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

i t = 11001

c0c1c2c3c4c5

N O(log(N))

Indices
0 1 0 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

Y10

Y17

Y20

Y25

Y27

Y28

An
on

ym
ity

 S
et

Binary Representation

Our Element

Kronecker-Delta
1 1 0 0 1

01010 0 1 1 0 0

10001 1 0 1 1 1

10100 1 0 0 1 0

11001 1 1 1 1 1

11011 1 1 1 0 1

11100 1 1 0 1 0

Y10

Y17

Y20

Y25

Y27

Y28

An
on

ym
ity

 S
et

Binary Representation

Our Element

Y25

Same as our element (1) or not (0)

Kronecker-Delta
1 1 0 0 1 Product

01010 0 1 1 0 0 0

10001 1 0 1 1 1 0

10100 1 0 0 1 0 0

11001 1 1 1 1 1 1

11011 1 1 1 0 1 0

11100 1 1 0 1 0 0

Y10

Y17

Y20

Y25

Y27

Y28

An
on

ym
ity

 S
et

Binary Representation

Our Element

Y25

Product of all numbers in each line

Kronecker-Delta

1 1 0 0 1

10001 1 0 1 1 1

10100 1 0 0 1 0

Y17

Y20

Binary Representation
Y25

δ(3,203)δ(2,202)δ(1,201) δ(4,204) δ(5,205)

δ(3,173)δ(2,172)δ(1,171) δ(4,174) δ(5,175)

Define as the agreement in the digit between

• The index of the element we own

• The index of the element in the anonymity set

δ(k, lk) kth

Kronecker-Delta
Define as the agreement in the digit between

• The index of the element we own

• The index of the element in the anonymity set

The product of the values in each line

is the indicator function of our secret element

δ(k, lk) kth

δl = ∏
k

δ(k, lk) = δ(1,l1) ⋅ δ(2,l2) ⋅ δ(3,l3) ⋅ δ(4,l4) ⋅ δ(5,l5)

Kronecker-Delta
Define as the agreement in the digit between

• The index of the element we own

• The index of the element in the anonymity set

The product of the values in each line

is the indicator function of our secret element.

• only for our element

δ(k, lk) kth

δl = ∏
k

δ(k, lk) = δ(1,l1) ⋅ δ(2,l2) ⋅ δ(3,l3) ⋅ δ(4,l4) ⋅ δ(5,l5)

δl = 1

Kronecker-Delta
Define as the agreement in the digit between

• The index of the element we own

• The index of the element in the anonymity set

We need

• for the first digit to be 0

• for the first digit to be 1

• for the second digit to be 0

• for the second digit to be 1

• for the third digit to be 0

• for the third digit to be 1

• …

δ(k, lk) kth

δ(1,0)
δ(1,1)
δ(2,0)
δ(2,1)
δ(3,0)
δ(3,1)

Number of values:

 O (log(N))

1-in-N ProtocolΣ−

, ,

Given . Show that

1. Each is 0 or 1

2. opens to 0

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

δ(k, ik), δl = ∏
k

δ(k, lk)

δl

δ1Y1 + δ2Y2 + … + δnYn

1-in-N ProtocolΣ−
Let’s focus on

• Using the 0/1 protocol, we hide for each digit the value
 with

δl = ∏
k

δ(k, lk)

δ(k,0)

fl,0 = δ(k,0)x + al,0
We have

• for the first digit to be 0

• for the second digit to be 0

• for the third digit to be 0

• …

f0,0
f1,0
f3,0

 is 1 if the digit is 0

 is 0 if the digit is 1

δ(k,0) kth

δ(k,0) kth

We have f0,1 = x − f0,0

1-in-N ProtocolΣ−
Let’s focus on

• hide

• in

• in

Instead of , consider the product

δl = ∏
k

δ(k, lk)

δ(k,0) fl,0 = δ(k,0)x + al,0

δ(k,1) fl,1 = x − fl,0

δl = ∏
k

δ(k, lk) pl(x) = ∏
k

fk,lk

1-in-N ProtocolΣ−
Let’s focus on

The product is

δl = ∏
k

δ(k, lk)

pl(x) = ∏
k

fk,lk

pl(x) = ∏
k

(δ(k, lk)x + ak,lk) = δlxm +
m−1

∑
k

pl,kxk

 is the number

of binary digits

m

 in

 in

δ(k,0) fl,0 = δ(k,0)x + al,0
δ(k,1) fl,1 = x − fl,0

1-in-N ProtocolΣ−

• The value is the secret parameter we need

• 1 for our own element, 0 for everything else

pl(x) = ∏
k

(δ(k, lk)x + ak,lk) = δlxm +
m−1

∑
k

pl,kxk

δl

1-in-N ProtocolΣ−

• The other term are independent of challenge

• Can be computed ahead of time

• Can be transmitted as Pedersen Commitments

pl(x) = ∏
k

(δ(k, lk)x + al,k) = δlxm +
m−1

∑
k

pl,kxk

pl,k x

1-in-N ProtocolΣ−
, ,

1. Generate random values and compute

 Transmit (Pedersen Comm)

2. For all values start a separate -protocol

• For an anonymity set of 1024, e.g., we need only 10 parallel 0/1
zero-knowledge proofs

• Results in

• A commitment for the digit to be 0

{Y1, Y2, …, Yn} Yi = miG + siH Yt = 0G + stH

ρk pl,k

Qk = ∑
i

pl,kYi + ρkH

δ(k, lk) Σ

fk,0 = δ(k,0)x + ak,0

kth

1-in-N ProtocolΣ−
, ,

3. Send

4. Verifier checks:

{Y1, Y2, …, Yn} Yi = miG + siH

Yt = 0G + stH

zd = stxn −
n−1

∑
k

ρkxk

(∏
k

fk,1k) Y1 + (∏
k

fk,2k) Y2 + … + (∏
k

fk,nk) Yn +
n−1

∑
k

x−kQk = 0G + zdH

 is the or , depending

on whether the digit of the

second index is 0 or 1

fk,2k
fk,0 fk,1

kth

Complete Description

Multiplicative notation aG ↦ gaCommitment Comck(x, y) = xG + yH

 is commitment key, i.e. two group elements ck G, H

