Zero-Knowledge Proofs |

Lelantus
Oct. 16, 2019

Overview

e Zero-Knowledge

 Proving a property about an element without revealing

e | elantus
e /Coin’s Zero-Knowledge protocol

 Prove that transactions are valid, without revealing
anything

Zero-Knowledge Proofs (ZKP)

* A proof about a property without revealing it
* Zero-Knowledge is not magic
* We have already seen several instances of ZKP

e Signatures are ZK proofs of knowing the secret key

e In ECC, the secret key a is the discrete logarithm of
the public key A = aG

* Also called proof of knowledge of discrete logarithm

Zero-Knowledge Proofs (ZKP)

e Another example we saw:
e Pedersen Commitment X = aG + AH

e We can proof that a = 0 without revealing 4 by using X
as public key in a signature (s,R),sH =R+ Z(...)X

* Those techniques are called Non-Interactive Signature-
based Proof-of-Knowledge (NI SPK)

Zero-Knowledge Proofs (ZKP)

e A more general approach is the so called 2-protocol

* A three way protocol
Alice Bob

some value b ¢ = commit(b) > random r
compute f(b, r) for <| '

some function f F(b, 1) >

Accepts if conditions are
met

Zero-Knowledge Proofs (ZKP)

e A Zero-Knowledge 2-protocol to show knowledge of
discrete logarithm of P = pG

Alice, knows p Bob, knows P
random value r R— G
Commit via ECC Point random challenge ¢

compute

fir,c,p) =s = r+cp >

Accepts if
)
sG=R+cP

Zero-Knowledge Proofs (ZKP)

e A Zero-Knowledge 2-protocol to show knowledge of
discrete logarithm of P = pG

Alice, knows p Bob, knows P
random value r

. . R=rG
Commit via ECC Point random challenge ¢

compute

f(rye,p)=s=r+cp > |

Same formula as Schnorr Signature

Zero-Knowledge Proofs (ZKP)

e A Zero-Knowledge 2-protocol to show knowledge of
discrete logarithm of P = pG

Alice, knows p
random value r, commit via ECC Point R = rG
challenge c is a hash using input R, P: ¢ = #Z' (R | P)
Withs =r+cp =r+ #(...)p, the Schnorr Signature is (s, R)

= Hashes can be used to transform an interactive Zero Knowledge
proof into a non-interactive proof

Zero-Knowledge Proofs (ZKP)

e Zero-knowledge proofs are often shown as 2.-protocol
1. Commit some value
2. accept a challenge
3. send a function

 With a hash it can be turned into a Non-Interactive proof

2.-protocol for Pedersen
commitas 0 or 1

e Assume we have a Pedersen Commitment X = aG + AH
e Before, we have seen a ZKP to show that a = (

e Now, we look at a ZKP to show thata = Qora = 1

2.-protocol for Pedersen
commitas 0 or 1

e AZKPtoshowthata =0ora =1

e How can that work?

2.-protocol for Pedersen
commitas 0 or 1

e AZKPtoshowthata =0ora=1

e How can that work?
e The one thing a = 0 and a = 1 have in common:

e We proofthata(l —a) =0

2.-protocol for Pedersen
Commitment as O or 1

C =mG + rH, proof m € {0,1}

Step 1
e Alice (knows C = mG + rH)

e generatesrandoma, s,t € Z

e commit and send

e ¢, =aG+ sH
e ¢, = (am)G +tH

2.-protocol for Pedersen
Commitment as O or 1

C =mG + rH, proof m € {0,1}

Step 1
e ¢, =aG + sH
e ¢, = (am)G +tH

Step 2
«— send challenge x

2.-protocol for Pedersen
Commitment as O or 1

C =mG + rH, proof m € {0,1}

Step 1
e ¢, =aG + sH
e ¢, = (am)G +tH

«— Step 2: random x
Step 3
f=mx+a

f’Za’Zb
Z,=rx+s —

,=r(x—f)+1

2.-protocol for Pedersen
Commitment as O or 1

C =mG + rH, proof m € {0,1}

Step 1
e ¢c,=aG + sH
o ¢, = (am)G +tH

«— Step 2: random x
Step 3
f=mx+a
f;chZb . .
Z,=Frx+s — Accept if and only If:
p=rx—f)+t xC+c,=fG+z,H

(x=f) C+¢,=0G + z,H

2.-protocol for Pedersen

Commitment as 0 or 1
C =mG + rH, proof m € {0,1}

Alice sends
c,=aG
f=mx+a

sH

Z,=rx+s

¢, = (am)G

)
Bob verifies: xC + ¢, =fG + 7, H

tH

,=r(x—f)+1

xC+c,=x(mG+rH) + (aG + sH)

=xmG +aG + xrH + sH
=(m+a)G+ (xr+s)H
=G+ z,H

2.-protocol for Pedersen

Commitment as 0 or 1
C =mG + rH, proof m € {0,1}

Alice sends
c,=aG+ sH ¢, = (am)G
f=mx+a Z,=rx+s

)
Bob verifies: xC + ¢, =fG + 7, H

tH

,=r(x—f)+1

e \We do not make any assumption about a, s

e xC+c,=(mx+a)G+(...)H

o IfxC+c,=fG+ (...)H, we know that f = mx + a

2.-protocol for Pedersen

Commitment as 0 or 1
C =mG + rH, proof m € {0,1}

Alice sends
c,=aG
f=mx+a

Bob verifies: (x —f) C+¢ = 0G + ZpH

e now we test m(1 — m) = O property via

sH

Z,=rx+s

¢, = (am)G

tH

,=r(x—f)+1

(x—f)C+cb= (x—(mx+a))C+cb

= (x — (mx + a))(mG +rH) + ¢,

2.-protocol for Pedersen

Commitment as 0 or 1
C =mG + rH, proof m € {0,1}

(x—f)C+cb= (x—(mx+a))C+cb
= (x—(mx+a))(mG+rH)+cb
= (x—(mx+a))mG+(x—f)rH+cb
= (xm — m*x — ma)G + (x —)rH + (amG + tH)
= (xm — m’x)G + (x — f)rH + tH
=xm(l —m)G + (r(x—f)+t)H
;OG+@H

2.-protocol for Pedersen

Commitment as 0 or 1
C =mG + rH, proof m € {0,1}

Alice sends
c,=aG
f=mx+a

Bob verifies: (x —f) C+¢ = 0G + ZpH

e now we test m(1 — m) = O property via

sH

Z,=rx+s

¢, = (am)G

tH

,=r(x—f)+1

(x=f)C+¢,=0G +(...)H

2.-protocol for Pedersen

Commitment as 0 or 1
C =mG + rH, proof m € {0,1}

Alice sends

c,=aG+ sH ¢, = (am)G + tH
f=mx+a Z,=71x+s =r(x—f)+t¢
Bob verifies:

e ifxC+c,=fG+z,Hand (x—f) C+c,=0G +z,H

e then: f = mx + a and xm(1 — m) = 0, regardless of x

e Thus we know that m € {0,1}

2.-protocol for Pedersen
Commitment as O or 1

e Wy do we do this?
e |tis very very cool!

e \We can use this as building block for more complex
proofs

e 1-in-N 2-protocols

1-in-N 2.—Protocol

e Assume we have a set of Pedersen Commitments given
e X1, X5,...,X 1},
e each X; = m,G + r;H has
e amount m;

e randomness r; as blinding value

1-in-N 2.—Protocol

Assume we have a set of Pedersen Commitments given
{Xl,Xz, .o .,Xn}, each Xl — mlG + I"lH
Assume we know X, = m,G + r,H

We want to prove that we know one of the X

1-in-N 2.—Protocol

Given:
o Xi,X5,..,. X}, X =mG+rH, X =mG+rH

We want to prove that we know one of the X,

Publish related Pedersen Commitment ¥ = m,G + sH

Verifier subtracts Y from all Pedersen Commitments
Proofisnow: 1in {X;, - Y, X, —-Y,...,X —Y}is0G+(...)H

e Technial term: opens to 0

1-in-N 2.—Protocol

e New Problem:
¢ {Yl’ Yz, coey Yn}, Yl — mlG‘l‘SlH, Yt —_ OG"‘StH

* We want to prove that one of the Y, opens to 0

1-in-N 2.—Protocol

e New Problem:
¢ {Yl’ Yz, cooy Yn}, Yl — mlG+SlH, Yt — OG"‘SIH

e We want to prove that one of the ¥; opens to O

e |dea:

e showthatc Y, +cY,+ ... +¢,Y, opensto0

e show that each c; is either O or 1

o show that Z c;is 1

1-in-N 2.—Protocol

e New Problem:

¢ {Y13Y29’Yn}’Yz=sz+SzH’ YtZOG‘l‘StH
° given CIY1+CZY2++CnYn
e show that each c; is either O or 1

e |f ¢ IS a number, we reveal the secret

o if ¢ is a group element, we don’t know what ¢;Y; means

1-in-N 2.—Protocol

Alice sends
=aG + sH ¢, = (am)G + tH
Z,=rx+s =r(x—f)+t
Bob verifies:

_ -ifxC+ca:fG+zaHand(x—f)C+cb=OG+ZbH
ook at previous proof:

e then: f = mx + a and xm(1 — m) = 0, regardless of x

e Thus we know that m € {0,1}

e considerf=mx+a
e Contains the valuem € {0,1}

e since a, m is secret, knowing f doesn’t reveal m

1-in-N 2.—Protocol

 New Problem:

e Y,Y,,...Y . },Y,=mG+sH Y =0G+ sH
o givenfiY,+ /Y, +...+f Y,
e Conduct N parallel 2 protocols for f. = m.x; + a,

e That gives a proof that m; € {0,1}

1-in-N 2.—Protocol

e New Problem:
® {Yl’ Yz, ceeo Yn}, Yl — mlG—I‘SlH, Yt — OG"‘SIH

* NOw we have

hHY+5HLY,+...+1Y,

1-in-N 2.—Protocol

e New Problem:
e Y. Y,,....Y },Y,=mG+sH Y =0G+ s H
* now we have
hHY+5HLY,+...+1Y,

— (mlx ~+ al)Yl —+ (mz.x —+ az)Yz + ... + (mnx an)

1-in-N 2.—Protocol

e New Problem:
e Y. Y,,....Y },Y,=mG+sH Y =0G+ s H
* now we have
hHY+5HLY,+...+1Y,

— (mlx ~+ al)Yl —+ (mz.x —+ az)Yz + ... + (mnx an)

zkaYk‘l‘ ZakYk

1-in-N 2.—Protocol

e New Problem:
e Y, Y,,....,.Y, Y, =mG+sH Y =0G+ s,H
* but now we have
hHY+5HLY,+...+1Y,

=mx+a)Y,+(mx+a)Y,+...+(mx+a,yY,

n
= kak + Z a. Y,

Opensto O independent of x,

can be send beforehand
« In aPedersen Commitment

1-in-N 2.—Protocol

New Problem:
® {Yl’ Yz, ceos Yn}, Yl — mlG‘l‘SlH, Yl‘ — OG+ SZ‘H
Proof:

hy+hY+ ... +1 Y, =mxY, + Z a, Y, opens to 0

 Doable, but not very efficient
* nis the size of the anonymity set

e \We can do better

1-in-N 2.—Protocol

Summary:

* A efficient, but slightly complicated, protocol

e \We can show that we know an index f of an element in
the anonymity that opens to 0, i.e. Y, = 0G + s, H

Building a cryptocurrency

We need
e A way to store the amount
A way to prevent double spending (an ID, or serial#)

e A blinding factor for anonymity

Pedersen Commitment

e A Pedersen Commitment X = aG + rH can store one
secret value

 We need to store 2 secret values (the amount and serial#)

Pedersen Commitment

e A Pedersen Commitment X = a(G + rH can store one
secret value

 We need to store 2 secret values (the amount and serial#)

X=aG+ sH+yF

amount blinding factor
serial#

Spending a Coin

Node publish serial# z (in plaintext) and anonymity set

Validator can verify whether this serial numbers has been
used before

Validator creates &' = {X; — zG | X; in anonymity set}

Node publishes a 1-in-N proof that one of the X; opens to
0,i.e. X, =aG + OH + yF

Efficiency comparison

Anonymity|Trusted | Cryptographic| Proof Proof | Verification
Set Size | Setup | Assumptions |Size(KB)| Time(s) | Time(ms)
Monero 10 No Well-tested 2.1 1 47
Zerocash 232 Yes |Relatively New 0.3 1-20 8
Zerocoin 213 Yes Well-tested 25 0.2 200
Lelantus 1 214 No Well-tested 1.5 1.2 121
Lelantus 2 216 No Well-tested 1.5 5.2 35 2

Lelantus

e Coins are Pedersen Commitments
e Value, Serial number, blinding factor X = vG + sH + yF

hidden coins (Pedersen Commitments)

JoinSpI

Plaintext coins

Lelantus Mint

e Delete a plaintext coin, create a hidden coin
e Hidden Coins: X = vG + sH + yF

 Publish a coin + proof that the value of the coin
* Proof of knowledge of discrete logarithm

X—vG=sH+yF

E.g. (c,d,), so that
c=3% (G|H|F|c(X —vG) +§;H+ 0{)

no correcrting term for G, thus
* this term does not contain any G

Leleantus Spend

e Simply open the commitment (v, s,) to show that

X=vG+sH+yF

e Amount v will be deposited to your account, ready to use

Leleantus JoinSplit

e Similarly to MimbleWimble transactions:

Ini+ ... +1In, — Out; — ... — Out,, — eG = 0G+O0H+ eF

N——

extra output tfansactiz)n kernél
1. For every input, present a 1-in-N 2-protocol

* publish Serial #, 1-in-N proof provides transaction input

[

—0 —0 —1 —0 vG+OF+y'F

Leleantus JoinSplit

e Similarly to MimbleWimble transactions:

T=Ini+...+1In,—0Out;y —... —Out,, —eG = 0G+ O0H + eF

transaction kernel

2. Proof that transaction kernel only consists of Fs with
Schnorr Signature

(s,R), sothat sF = R +#ZR|T) T
onlyF onlyF only F

Lelantus

e Coins are Pedersen Commitments
e Value, Serial number, blinding factor X = vG + sH + yF

hidden coins (Pedersen Commitments)

JoinSpI

Plaintext coins

1-in-N 2.—Protocol

Efficient encoding of the coefficients

Z{ero{Coin|Cash}

e /Cash, Zerocoin, ZCoin all work somehow similarly
 1-in-N proof that someone knows a token

e Double spend prevention via serial number

Z{ero{Coin|Cash}

ZCoin

e used Lelantus

Z{ero{Coin|Cash}

Zerocash
e Uses a Merkle Tree to store hidden coins

e 1-in-N proof is therefore aProof-of-Knowledge about an
entry in the Merkle Tree

e zk-SNARKS

Z{ero{Coin|Cash}

Zerocoin (originally only fixed size values X = sH + yF)

Programming bugs, i.e. “=“ vs “==“, or insufficient checks to allow spending the same serial
number twice

vF = (y + grouporder VF

how many elements in curve

Attack vector: Serial numbers can be chose freely. Bob sees Alice using a serial number, he
can quickly mint and spend a coin with the same serial number. This makes the coin for
Alice unusable

April 2018: A unrecoverable cryptographic problem. Two ZK proofs were used:
e (1) proof of knowledge of a minted coin
e (2) proof of knowledge of a serial number

* The part that joins these two proofs (that the coin known in (1) is the one with the
serial#) was flawed

Original Zerocoin stopped. Complete redo (also using zk-SNARKS) in the making

Appendix

Detailed description of the 1-in-N 2-protocol using the
binary representation of indices (25 =00011001)

1-in-N 2.—Protocol

* Problem:
e Y, Y,,....Y },Y.=mG+sH Y =0G+sH
e Efficient encoding of the coefficients:
e Proof that you know a value 7 so that
ci1Y{+coY,+...+c¢,Y, openstoO

e Assume each index 1 is given in binary format
e (i.e.i=0110101)

1-in-N 2.—Protocol

* New Problem:
e Y. Y,,....Y }, Y. =mG+sH Y =0G+ s,H
» Efficient approach:
e represent the index i in binary form, i.e. t = 11001
o for each digit a separate variable cyc,;¢,¢5¢4C5

 Instead of N secret {0,1} coefficients, only O(log(V))

e Details are more complex, at the end of the lecture (if
time permits)

Indices

Binary Representation

Y 10 0 1 0 1 0

Y| 1 0 0 0 1

E 2N 61 1 0 1 0 0
's@ ...

& Y55 1 1 0 0 1
vg ---
\ fr | ' L o L b

) 1 1 1 0 0

* Our Element

Kronecker-Delta

Binary Representation

¥ys 1 1 0 0 1
Yo 01010
0 1 1 0 0
e e
10001 1 0 1 1 1
&7 ___
(70 Yy
S 10100 1 0 0 1
S A R B B B
S 11001 1 1 1 1
< g, A W S S S S
Y.
11011 1 1 1 0
*411100 1 1 0 1

Our Element Same as our element (1) or not (0)

_..Anonymity Set

Kronecker-Delta

Binary Representation

Y. 25 1 1 0 0 1 Product

10001 1 0 1 1 1 0
2 S I
10100 1 0 0 1 0 0
S
£41001 1 1 1 1 1 1

..

...

Product of all numbers in each line

* Our Element ,

Kronecker-Delta

Binary Representation

Y17 10001 1 o 1 1 1

..

Y, 10100

1 0 0 1 0
5(1,20,) | 8(2,20,) | 8(3,205) = 8(4,20,) | 5(5,205)

Define 6(k, [,) as the agreement in the k™ digit between

* The index of the element we own
* The index of the element in the anonymity set

Kronecker-Delta

Define o0(k, [,) as the agreement in the k™ digit between

e The index of the element we own

* The index of the element in the anonymity set

The product of the values in each line

5= [ok. 1) = 6(1.1)) - 5Q2.1) - 5B3.1) - 8(4.1,) - 8(5.15)
k

IS the indicator function of our secret element

Kronecker-Delta

Define 6(k, [,) as the agreement in the k™ digit between

e The index of the element we own
* The index of the element in the anonymity set

The product of the values in each line

5 =8k 1) =811 52.1) - 63.1y) - 5(4.1,) - 8(5.15)
k

IS the indicator function of our secret element.

e 0, = 1 only for our element

e The index of the element we own

Kronecker-Delta

Define d(k, [) as the agreement in the k™ digit between

e The index of the element in the anonymity set

We need

0(1,0) fort
o(1,1) fort
0(2,0) for t
0(2,1) fort
0(3,0) for t
0(3,1) fort

ne first digit to be O
ne first digit to be 1

ne second digit to be 0

ne second digit to be 1

ne t

ne t

nird digit to be 0

nird digit to be 1

Number of values:

O (log(N))

1-in-N 2.—Protocol

{Yl’ Y2, co e Yn}, Yl — mlG‘l' SiH’)]l‘ — OG + SIH
Given (k. i), &= | | 8(k.1,). Show that
k

1. Eacho,is0or 1

2. oY1 +0,Y,+...+0,Y opensto0

1-in-N 2.—Protocol

Let’s focus on 0, = Hé(k, [,)
k

e Using the 0/1 protocol, we hide for each digit the value

0(k,0) with
1.0 — 5(]{,))6 + al,o

We have TN

e £ for the first digit to be 0 “~ 0(k,0) is 1 if the k™digit is O
9 . . h . . .

e fi o for the second digit to be 0 6(k,0) is 0 if the k"'digit is 1

. f3’0 for the third digit to be 0

We have f, | = x — fy

1-in-N 2.—Protocol

Let’s focus on §; = Hé(k, [,)
k

* hide
e 0(k,0)in fio=0(k0)x+a,

° 5(k,1) N 11 =X _]Cl,()

Instead of o, = Hé(k, [,), consider the product p,(x) = H Jel,
k k

1-in-N 2.—Protocol

Let’s focus on 0, = Hé(k, [) 0(k,0) in fl,() = 0(k,0)x + aj o
k o(k,1) in fl,l = X _fl,O

m is the number

// of binary digits

m—1
pix) = H <5(k, L)X + ak,lk> = o™ + Z pix”
k

k

The product p,(x) = H kak is
k

1-in-N 2.—Protocol

p =[] (6(k, L)x + “k,zk) 7

k

e The value 0 is the secret parameter we need

1 for our own element, O for everything else

1-in-N 2.—Protocol

pi@) = [] 6k, box +) = 6™ + Y (1)
k A

 The other term p, , are independent of challenge x

e Can be computed ahead of time

e (Can be transmitted as Pedersen Commitments

1-in-N 2.—Protocol

{Yl’ Yz, ceos Yl’l}’ Yl — mlG + SiH’ Yl‘ — OG + SZ‘H
1. Generate random values p, and compute p,

Transmit Q) = 2 PiiY; + piH (Pedersen Comm)

l

2. For all 6(k, [,) values start a separate X-protocol

* For an anonymity set of 1024, e.g., we need only 10 parallel 0/1
zero-knowledge proofs

e Results in fk,o = 0(k,0)x + A0

e A commitment for the k™ digit to be 0

1-in-N 2.—Protocol

{Yl’ Yz, ceeo Yn}, Yl — mlG‘l'SlH,

Y. =0G + s,H Jxo, is the f o or f; 1, depending
on whether the k™ digit of the
second index is O or 1

n—1
3. Send z;, = s.x" — Z ppxk
k

4. Verifier checks:

v n—1
(Hf> e (Hf> prer (Hf) Yo+ 270 = 0G + 2
k k k k

Complete Description

ck is commitment key, i.e. two group elements G, H

k, (coy---reN—1), (£,1)) V(ck, (coy..-ycN-1)))

For 9 =1,...,n
rjaa’jasj)tjapk — Zq
ce, = Comeg (€;;7;)
Ca; = Comci(aj; s5) CoyyCaryChyyCdyy - - s
Ch. Comck (Yja;;t;) €21 CansChosCd, o, Accept if and only if

_ =TI, ¢** Com(0; px,) Ctys---yCd, , € Cek

’ usingk:j—l fiy--+,24 € Zg

and p; ;, from (1) B z + {0,1}* For all j € {1,...,n}
€y Ca; = Comck(f],zaj)

For j=1,...,n f1s2Zays Zbyy -« s CZS fjcbj :Comck(O;zbj)
fi =4jx + a;j frsZans 26,524 115 }'L, , Fii, TPl e g: -
Za; =TT + 8 = Com, (05 zq) [
2y, = 15(x — f;) + 1 using fj1 = f;
2g =TT — 3 1o prxF and fjo=2x — f;

Commitment Com,_,(x,y) = xG + yH Multiplicative notation aG — g¢

