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Overview
• Recap Lelantus


• One efficient way to do 1-in-N proofs


• zk-SNARKs


• A general way to prove anything in Zero-Knowledge 


• (if you don’t know how to do it any other way, use 
zk-SNARKs)



Lelantus

Plaintext coins

hidden coins (Pedersen Commitments)

Mint Spend

JoinSplit

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
…



Lelantus Mint

Plaintext coins

hidden coins (Pedersen Commitments)

Mint

Proof: Pedersen Commitment valid



Lelantus 
Spend

Plaintext coins

hidden coins (Pedersen Commitments)

Spend

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
73f143adf73708de491ff9d
…

Proof: Serial number 
amount



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

JoinSplit

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
…



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
…

1-in-N

Input1



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
…

1-in-N

Input1 + Input2



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…

1-in-N

Input1 + Input2 + Input3



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1

Proof: valid Pedersen Commitment

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1 + Output2

Proof: valid Pedersen Commitment

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1 + Output2 + ExtraCashOut

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…



Lelantus 
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1 + Output2 + ExtraCashOut=T

If , then T can be described as a factor of only  and :


• does not have any  components = no money was created or destroyed

c = ℋ(T |cT + dH + αF) H F

G

Proof of valid transaction: (c, d, α)

Used serial# 
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…



Anonymous 
Cryptocurrencies

Pedersen Commitments

1-in-N proofs

1-in-N proofs

1-in-N proofs



zk-SNARKs
Zero-Knowledge 


Succinct Non-Interactive Argument of Knowledge 



zk-SNARK
• A general purpose zero-knowledge tool for any computation


• Need to prove that you know the pre-image of a hash


• => zk-SNARK


• Need to build a secret cryptocurrency (e.g. Zerocoin)


• => zk-SNARK


• Need to prove that you know XYZ?


• => zk-SNARK



zk-SNARK

• A general purpose zero-knowledge tool for any 
computation


• Very useful, highly relevant, but quite complicated


• We will give a high-level overview of how this works


• a complete discussion could be an entire semester



zk-SNARK
• Perform the computation storing any intermediate value


• All values of all variables, called the witness


• We encode the witness as a polynomial function 


• We show that  can divide , the constraint polynomial


• Only if  is the witness valid


• If the witness is valid, the program was executed correctly 

w(x)

w(x) c(x)

a(x) ⋅ w(x) = c(x)



zk-SNARK

• The trick is showing  


• We show  at a secret position 


• Encode polynomials  and position  via ECC

a(x) ⋅ w(x) = c(x)

a(x) ⋅ w(x) − c(x) = 0 x

a, w, c x



zk-SNARK

• Alice wants to convince Bob that she executed a program


• Alice creates the witness 


• Bob choses a position  and verifies  


w(x)

xeval
a(xeval) − w(xeval) − c(xeval) = 0



Evaluating two polynomials at a random 
position is enough to check for equality



All that’s left to do

• Represent the proof of executing a program as a proof 
that I know a divisor of a polynomial 


• Encode the proof  in ECC w(x)a(x) = c(x)



Proof of Knowledge of 
Division

• Points can be added and multiplied


• given 3 points , I can 
encode the polynomial  





• The details on how to do the polynomial checks are 
beyond the scope of today’s lecture

A = aG, B = bB, C = cG, D = dG
ax3 + bx2 + cx + d

x3A + x2B + xC + D



Proof of execution
• Computers run on hardware


• Theoretically, we can simulate any program with looking 
at the binary circuits 


1. Represent the computation as a binary circuit


• Or algebraic circuit for pure math problems


2. Reduction to a Rank 1 Constraint System (R1CS)


3. Representation as a Quadratic Assignment Problem (QAP)



Program Representation
• Assume we want to prove that we know a value  so that 

 (hint )


• Other applications: 


• I know a value  so that  (proof of 
knowledge of preimage)


• A secret blockchain: I know a transaction  so that 

•  is the blockchain

• I know the private key/serial# of 

• The output is not yet spend

x
x4 + x + 2 = 86 x = 3

x ℋ(x) = 23d23e1…

T
T

T



Flattening the computation 
Proof: We know  so that  (hint )


• We can verify all basic operations (+,-,*,assignment)


• We need to represent the computation as a sequence of 
basic steps (possibly introducing temporary variables)


1. 

2. 

3. 

4. 


x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x
out = c + 2 ×

+

x

+

x
×

x x

×

x 2



Proof: We know  so that  (hint )


1. 

2. 

3. 

4. 


x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Flattening the computation 

O = L R
operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

 instead of  as 

basic unit for all


constants 

1 2



We can generalize all operations using 3 vectors:

Each operation as vector 
O=L R

operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂⋅ =



1 ⋅ x

⋅

We can generalize all operations using 3 vectors:

Multiplication: (Example )a = x ⋅ x

Each operation as vector 
O=L R

operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂=

1 ⋅ x ⋅ = a ⋅ 1



⋅

We can generalize all operations using 3 vectors:

Addition: (Example  )b = x + 7

Each operation as vector 
O=L R

operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

0

0

0

1

0

0

1

0

0

0

0

0

7

1

0

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂=

1 ⋅ 1 (1 ⋅ 7) + (x ⋅ 1)⋅ = b ⋅ 1



Proof: We know  so that  (hint )


1. 

2. 

3. 

4. 


x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector 

O=L R
operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =



Proof: We know  so that  (hint )


1. 

2. 

3. 

4. 


x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector 

O=L R
operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =



Proof: We know  so that  (hint )


1. 

2. 

3. 

4. 


x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector 

O=L R
operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =



Proof: We know  so that  (hint )


1. 

2. 

3. 

4. 


x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector 

O=L R
operator 
( )⋅ , + , −

List of all variables: 
1,x, a, b, c, out

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =



Proof: We know  so that  (hint )
x x4 + x + 2 = 86 x = 3

Summarized Constraints

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

1

x

a

b

c

out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1st constraint x ⋅ x = a
3rd constraint b + x = c



Witness
• To proof that we executed the computation for 

 (hint ) we create the following 
witness
x4 + x + 2 = 86 x = 3

1

x

a

b

c

out

1

3

9

81

84

86



Witness fulfills all Constraints
0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(3 ⋅ 1) ⋅ (3 ⋅ 1) = (9 ⋅ 1)

⋅ =



0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(9 ⋅ 1) ⋅ (9 ⋅ 1) = (81 ⋅ 1)

⋅ =

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

Witness fulfills all Constraints



0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(1 ⋅ 1) ⋅ (3 ⋅ 1 + 81 ⋅ 1) = (84 ⋅ 1)

⋅ =

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

Witness fulfills all Constraints



0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(1 ⋅ 1) ⋅ (2 ⋅ 1 + 84 ⋅ 1) = (86 ⋅ 1)

⋅ =

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

Witness fulfills all Constraints



Witness
Naive approach


• Alice: Create the 3 groups of vectors as constraints


• Bob: Runs the computation, creates the witness


• Alice: checks that the witness fulfills all constraints


• Works, but is slow and uses lots of data



Quadratic Assignment 
Problem

• We encode the constraints and witnesses as polynomials

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

x

a

b

c

out

L1(t)



Quadratic Assignment 
Problem

• We encode the constraints and witnesses as polynomials

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

O=L R
operator 
( )⋅ , + , −



Quadratic Assignment 
Problem

• Value  encodes the step of the program


• We show that for the polynomial  :

 


• This implies that it hold for all , i.e. all computational steps were done 
correctly

t = 1,2,3,4

L−, R−, O−
L−(t) ⊗ Witness ⋅ R−(t) ⊗ Witness = O−(t) ⊗ Witness

t

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)



Quadratic Assignment 
Problem

                L1(1) = 0 L1(2) = 0 L1(3) = 1 L1(4) = 1

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0



Creating Polynoms
,      ,        ,        
P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlock1(t) = (t − 2)(t − 3)(t − 4)



Creating Polynoms
,      ,        ,        
P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlock2(t) =
(t − 2)(t − 3)(t − 4)

(1 − 2)(1 − 3)(1 − 4)

1 at ,

0 at 

t = 1
t = 2,3,4



Creating Polynoms

• Assume we want 


,      ,        ,        





•  at , 0 at 

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlockw(t) = w ⋅
(t − 2)(t − 3)(t − 4)

(1 − 2)(1 − 3)(1 − 4)

w t = 1 t = 2,3,4



Creating Polynoms

• Assume we want 


,      ,        ,        





•  at , 0 at 

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlockx(t) = x ⋅
(t − 1)(t − 3)(t − 4)

(2 − 1)(2 − 3)(2 − 4)

x t = 2 t = 1,3,4



Creating Polynoms

• Assume we want 


,      ,        ,        





•  at , 0 at 

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlocky(t) = y ⋅
(t − 1)(t − 2)(t − 4)

(3 − 1)(3 − 2)(3 − 4)

y t = 3 t = 1,2,4



Creating Polynoms

• Assume we want 


,      ,        ,        





•  at , 0 at 

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlockz(t) = z ⋅
(t − 1)(t − 2)(t − 3)

(4 − 1)(4 − 2)(4 − 3)

z t = 4 t = 1,2,3



Creating Polynoms

• 





• ,      ,        ,        


P(t) = buildingBlockw(t) + buildingBlockx(t)+

buildingBlocky(t) + buildingBlockz(t)

P(1) = w P(2) = x P(3) = y P(4) = z



Quadratic Assignment 
Problem










L1(1) = 0

L1(2) = 0

L1(3) = 1

L1(4) = 1

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

L1(t) = − 0.333t3 + 2.5t2 − 5.166t + 3



Quadratic Assignment 
Problem

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0










Lx(1) = 1

Lx(2) = 0

Lx(3) = 0

Lx(4) = 0

Lx(t) = − 0.166t3 + 1.5t2 + −4.333t + 4



Quadratic Assignment 
Problem

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1tt2t3

coefficients

-0.333 2.5 -5.166 3.0

-0.166 1.5 -4.333 4.0

0.5 -4.0 9.5 -6.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0



Quadratic Assignment 
Problem

1

x

a

b

c

out

coefficients

0.333 -2.0 3.666 -2.0

-0.666 5.0 -11.33 8.0

0.5 -4.0 9.5 -6.0

-0.5 3.5 -7.0 4.0

0.166 -1.0 1.833 -1.0

0.0 0.0 0.0 0.0

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)
2

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

1tt2t3



0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

Quadratic Assignment 
Problem

1

x

a

b

c

out

coefficients

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-0.166 1.5 -4.333 4.0

0.5 -4.0 9.5 -6.0

-0.5 3.5 -7.0 4.0

0.166 -1.0 1.833 -1.0

1tt2t3

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)



1

3

9

81

84

86

Adding the Witness

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂



1

3

9

81

84

86

Adding the Witness
L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂ this is also a polynomial 

L(t) = 3.66t3 − 29x2 + 67.33x − 39



1

3

9

81

84

86

Adding the Witness

⨂

R(t) = 22.166t3 + 167.5x2 − 341.33x + 199

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)



1

3

9

81

84

86

Adding the Witness

⨂

O(t) = 11.333t3 − 102.5x2 + 300.166x − 200

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)



Check all Constraints

1

3

9

81

84

86

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂

1

3

9

81

84

86

⨂

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

1

3

9

81

84

86

⨂

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

=⋅

L(t) O(t)R(t) =⋅

For  t = 1,2,3,4



Check all Constraints

L(t) O(t)R(t) =⋅

For  t = 1,2,3,4

• We don’t make any assumption for the values 


• More generalized, we can write 

t ≠ 1,2,3,4

X(t) = L(t)R(t) − O(t)



Polynomials with same roots

• If a polynomial  has the same roots than another 
, they divide each other without residue


• 


• To check that our polynomial  is 
zero at 


• We construct 


• Verify that 

p1(x)
p2(x)

p1(x) = c ⋅ p2(x)

X(t) = L(t)R(t) − O(t)
t = 1,2,3,4

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4)
X(t)
Z(t)

= H(t)



Polynomials with same 
roots

• We compute 


• We show  is a divisor of 


•  is 0 at 


• Thus  at 


• Compute  


• If the witness were fake, this division leaves a residue


• All that’s left to prove is 

X(t) = L(t)R(t) − O(t)

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4) X(t)

X(t) t = 1,2,3,4

L(t) ⋅ R(t) = O(t) t = 1,2,3,4

H(t) =
X(t)
Z(t)

H(t)Z(t) = X(t)



To check all constraints









• Instead of , show  
everywhere


• Instead of  everywhere, pick a secret  
and evaluate the 3 functions there (with ECC math)

X(t) = L(t)R(t) − O(t)

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4)

H(t) =
X(t)
Z(t)

H(t)Z(t) = X(t) H(t)Z(t) − X(t) = 0

H(t)Z(t) − X(t) = 0 t



Summary
• Alice:

• List an arbitrary computation as a set of basic operations


• Create  polynomials for each input, temporary 
variables, output and the constant 1


• Bob:

• Creates the witness vector


• Computes 


• Divides 


• Alice:


• Evaluates the equation  at a point of her choosing, 
accepts if 0

L−(t), R−(t), O−(t)

L(t) = W ⊗ L−(t), R(t) = …, O(t) = …
H(t) = X(t)/Z(t)

H(t)Z(t) = X(t)



Trusted Setup
• This is done non-interactively if Alice encrypts the point  

as , and Bob proves that 


• If Bob can break the encryption (or if he breaks into Alices 
computer), he can find 


• knowing at which point Alice evaluates , 
he can fake a solution


• Coda, Zerocoin, Zerocash, and others use zk-SNARKS


• We need to trust that the creators do not collaborate 
with some users and share the secret value 

t
T = tG H(T )Z(T ) − X(T ) = 0

t

H(t)Z(t) = X(t)

t
🤔


