Zero-Knowledge Proofs II zk-SNARKs

Oct. 21, 2019

Overview

- Recap Lelantus
 - One efficient way to do 1-in-N proofs

- zk-SNARKs
 - A general way to prove anything in Zero-Knowledge
 - (if you don't know how to do it any other way, use zk-SNARKs)

Lelantus Mint

Proof: Pedersen Commitment valid

Used serial#

e8fb04ab61cfdd9ab54d9b1 ea6a1728b274a7e3c667523 cdcb04f2b45a6dd3c13e90c 050cf72a2c4ff1f4df4084a 5a35670340e4107632e4629 f59cc4cef45a8063e4afb65 2d28e9bb87f78a5c0b6b008 1c4433bd43daafa3806759b 4f587540daa9bcb002b3699

Used serial#

e8fb04ab61cfdd9ab54d9b1 ea6a1728b274a7e3c667523 cdcb04f2b45a6dd3c13e90c 050cf72a2c4ff1f4df4084a

5a35670340e4107632e4629 f59cc4cef45a8063e4afb65 2d28e9bb87f78a5c0b6b008

Used serial#

e8fb04ab61cfdd9ab54d9b1 ea6a1728b274a7e3c667523 cdcb04f2b45a6dd3c13e90c 050cf72a2c4ff1f4df4084a 5a35670340e4107632e4629 f59cc4cef45a8063e4afb65 2d28e9bb87f78a5c0b6b008 1c4433bd43daafa3806759b 4f587540daa9bcb002b3699 a6e434bb929b8c4d9adf1fb 73f143adf73708de491ff9d 95b96411c8dc99f6be2b443

Used serial# e8fb04ab61cfdd9ab54d9b1 ea6a1728b274a7e3c667523

ea6a1728b274a7e3c667523 cdcb04f2b45a6dd3c13e90c 050cf72a2c4ff1f4df4084a 5a35670340e4107632e4629 f59cc4cef45a8063e4afb65 2d28e9bb87f78a5c0b6b008 1c4433bd43daafa3806759b 4f587540daa9bcb002b3699 a6e434bb929b8c4d9adf1fb 73f143adf73708de491ff9d 95b96411c8dc99f6be2b443

hidden coins (Pedersen Commitments)

Used serial#

e8fb04ab61cfdd9ab54d9b1 ea6a1728b274a7e3c667523 cdcb04f2b45a6dd3c13e90c 050cf72a2c4ff1f4df4084a

5a35670340e4107632e4629 f59cc4cef45a8063e4afb65 2d28e9bb87f78a5c0b6b008 1c4433bd43daafa3806759b

If $c = \mathcal{H}(T | cT + dH + \alpha F)$, then T can be described as a factor of only H and F:

• does not have any *G* components = no money was created or destroyed

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge

- A general purpose zero-knowledge tool for any computation
 - Need to prove that you know the pre-image of a hash
 - => zk-SNARK
 - Need to build a secret cryptocurrency (e.g. Zerocoin)
 - => zk-SNARK
 - Need to prove that you know XYZ?
 - => zk-SNARK

- A general purpose zero-knowledge tool for any computation
 - Very useful, highly relevant, but quite complicated
 - We will give a high-level overview of how this works
 - a complete discussion could be an entire semester

- Perform the computation storing any intermediate value
 - All values of all variables, called the *witness*
- We encode the witness as a polynomial function w(x)
- We show that w(x) can divide c(x), the constraint polynomial
 - Only if $a(x) \cdot w(x) = c(x)$ is the *witness* valid
 - If the witness is valid, the program was executed correctly

- The trick is showing $a(x) \cdot w(x) = c(x)$
 - We show $a(x) \cdot w(x) c(x) = 0$ at a secret position x
 - Encode polynomials *a*, *w*, *c* and position *x* via ECC

- Alice wants to convince Bob that she executed a program
- Alice creates the witness w(x)
- Bob choses a position x_{eval} and verifies $a(x_{eval}) - w(x_{eval}) - c(x_{eval}) = 0$

Evaluating two polynomials at a random position is enough to check for equality

All that's left to do

- Represent the proof of executing a program as a proof that I know a divisor of a polynomial
- Encode the proof w(x)a(x) = c(x) in ECC

Proof of Knowledge of Division

- Points can be added and multiplied
- given 3 points A = aG, B = bB, C = cG, D = dG, I can encode the polynomial $ax^3 + bx^2 + cx + d$

$$x^3A + x^2B + xC + D$$

 The details on how to do the polynomial checks are beyond the scope of today's lecture

Proof of execution

- Computers run on hardware
 - Theoretically, we can simulate any program with looking at the binary circuits
- 1. Represent the computation as a binary circuit
 - Or algebraic circuit for pure math problems
- 2. Reduction to a Rank 1 Constraint System (R1CS)
- 3. Representation as a Quadratic Assignment Problem (QAP)

Program Representation

- Assume we want to prove that we know a value x so that $x^4 + x + 2 = 86$ (hint x = 3)
- Other applications:
 - I know a value x so that $\mathscr{H}(x) = 23d23e1...$ (proof of knowledge of preimage)
 - A secret blockchain: I know a transaction T so that
 - *T* is the blockchain
 - I know the private key/serial# of ${\cal T}$
 - The output is not yet spend

Flattening the computation

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

• We can verify all basic operations (+,-,*,assignment)

 \mathcal{X}

 We need to represent the computation as a sequence of basic steps (possibly introducing temporary variables)

 \mathcal{X}

Х

X

 \mathcal{X}

 \mathcal{X}

Flattening the computation

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

- 1. $a = x \cdot x$
- 2. $b = a \cdot a$
- $3. \quad c = b + x$
- 4. out = c + 2

List of all variables: 1,x,a,b,c, out

1 instead of 2 as basic unit for all constants

List of all variables: 1,x,a,b,c, out

We can generalize all operations using 3 vectors:

List of all variables: 1,x,a,b,c, out

We can generalize all operations using 3 vectors:

Multiplication: (Example $a = x \cdot x$)

List of all variables: 1,x,a,b,c, out

We can generalize all operations using 3 vectors:

Addition: (Example b = x + 7)

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

1.
$$a = x \cdot x$$

2. $b = a \cdot a$

3. c = b + x

4.
$$out = c + 2$$

Loperator
$$(\cdot, +, -)$$
R=OList of all variables:
 $1, x, a, b, c, out$

	_			_		
1	0		1	0	1	0
x	1		x	1	x	0
a	0		а	0	 a	1
b	0	•	b	0	 b	0
С	0		С	0	С	0
out	0		out	0	out	0

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

1.
$$a = x \cdot x$$

2. $b = a \cdot a$
3. $c = b + x$
4. $out = c + 2$

Loperator
 $(\cdot, +, -)$ R=OList of all variables:
1, x, a, b, c, out

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

1.
$$a = x \cdot x$$

2. $b = a \cdot a$
3. $c = b + x$
4. $out = c + 2$

Loperator
 $(\cdot, +, -)$ R=OList of all variables:
1,x,a,b,c,out

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

1. $a = x \cdot x$ 2. $b = a \cdot a$ 3. c = b + x

4. out
$$= c + 2$$

$$\begin{bmatrix} L & operator \\ (\cdot, +, -) \end{bmatrix} = \begin{bmatrix} 0 \\ \end{bmatrix}$$

1,*x*, *a*, *b*, *c*, out

Summarized Constraints

Proof: We know x so that $x^4 + x + 2 = 86$ (hint x = 3)

Witness

• To proof that we executed the computation for $x^4 + x + 2 = 86$ (hint x = 3) we create the following witness

1		0	0	1	1		0	0	0	2		0	0	0	0	
x		1	0	0	0		1	0	1	0		0	0	0	0	
a		0	1	0	0		0	1	0	0		1	0	0	0	
b		0	0	0	0		0	0	1	0		0	1	0	0	
С		0	0	0	0		0	0	0	1		0	0	1	0	
out		0	0	0	0		0	0	0	0		0	0	0	1	
					(3	• 1)	• (3 •	• 1) =	= (9	· 1)						
	1	0				1	0				1	0				
	3	1				3	1				3	0				
	9	0				9	0				9	1				
	81	0		•	8	81	0		=		81	0				
	84	0			8	84	0				84	0				
	86	0			8	86	0				86	0				

1	0	0	1	1		0	0	0	2	0	0	
X	1	0	0	0		1	0	1	0	0	0	
a	0	1	0	0		0	1	0	0	1	0	
b	0	0	0	0		0	0	1	0	0	1	
С	0	0	0	0		0	0	0	1	0	0	
out	0	0	0	0		0	0	0	0	0	0	
				(9 •	1)•	(9 •	1) =	: (81	· 1)			
	1	0				1	0			1	0	
	3	0				3	0			3	0	
	9	1				9	1			9	0	
	81	0		•		81	0		=	81	1	
	84	0				84	0			84	0	
	86	0				86	0			86	0	

1	0	0	1	1		0	0	0	2		0	0	0	0	
X	1	0	0	0		1	0	1	0		0	0	0	0	
a	0	1	0	0		0	1	0	0		1	0	0	0	
b	0	0	0	0		0	0	1	0		0	1	0	0	
С	0	0	0	0		0	0	0	1		0	0	1	0	
out	0	0	0	0		0	0	0	0		0	0	0	1	
	_		(1 •	1)•	(3 •	1+	81 ·	1) =	: (84	• 1))	-			
		1	1				1	0				1	0		
		3	0				3	1				3	0		
		9	0				9	0				9	0		
		81	0		•		81	1				81	0		
		84	0				84	0				84	1		
		86	0				86	0				86	0		

1	0	0	1	1		0	0	0	2		0	0	0	0	
x	1	0	0	0		1	0	1	0		0	0	0	0	
a	0	1	0	0		0	1	0	0		1	0	0	0	
b	0	0	0	0		0	0	1	0		0	1	0	0	
С	0	0	0	0		0	0	0	1		0	0	1	0	
out	0	0	0	0		0	0	0	0		0	0	0	1	
			(1	1)	$(\mathbf{)}$	<u>1</u> г	0 /	1)	(06	1)					
			(1 •	1)•	$(2 \cdot$	1 +	δ4 ·	1) =	= (80	· 1)					
			(]· 1	1)• 1	(2•	1 +	84 ·	1) =	2)•1)		[1	0	
			(] · 1 3	1) · 1 0	(2.	1 +	84 ·	1) = 1 3	2 0)•1)		-	1 3	0 0	
			(1 · 1 3 9	1) · 1 0	(2.	1 +	84 ·	1) = 1 3 9	2 0 0	· 1)			1 3 9	0 0 0	
			1 3 9 81	1) · 1 0 0	(2.	•	84 ·	1) = 1 3 9 81	2 0 0)•1)	—		1 3 9 81	0 0 0 0	
			1 3 9 81 84	1) · 1 0 0 0	(2.	•	84 ·	1) = 1 3 9 81 84	2 0 0 1	··1)	_		1 3 9 81 84	0 0 0 0	

Witness

Naive approach

- Alice: Create the 3 groups of vectors as constraints
- Bob: Runs the computation, creates the witness
- Alice: checks that the witness fulfills all constraints

• Works, but is slow and uses lots of data

• We encode the constraints and witnesses as polynomials

1	$L_1(t)$	0	0	1	1
x		1	0	0	0
а		0	1	0	0
b		0	0	0	0
С		0	0	0	0
out		0	0	0	0

0	0	0	2
1	0	1	0
0	1	0	0
0	0	1	0
0	0	0	1
0	0	0	0

0	0	0	0
0	0	0	0
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

We encode the constraints and witnesses as polynomials

L operator
$$(\cdot, +, -)$$
 R = O

- Value t = 1, 2, 3, 4 encodes the step of the program
- We show that for the polynomial L_{-}, R_{-}, O_{-} : $L_{-}(t) \otimes \text{Witness} \cdot R_{-}(t) \otimes \text{Witness} = O_{-}(t) \otimes \text{Witness}$
 - This implies that it hold for all *t*, i.e. all computational steps were done correctly

$L_1(t)$	0	0	1	1	
$L_{x}(t)$	1	0	0	0	
$L_a(t)$	0	1	0	0	
$L_b(t)$	0	0	0	0	
$L_c(t)$	0	0	0	0	
$L_{out}(t)$	0	0	0	0	

1

X

a

b

С

out

 $L_1(1) = 0$ $L_1(2) = 0$ $L_1(3) = 1$ $L_1(4) = 1$

P(1) = w, P(2) = x, P(3) = y, P(4) = z

buildingBlock₁(t) = (t - 2)(t - 3)(t - 4)

$$\underline{P(1) = w}, \quad P(2) = x, \quad P(3) = y, \quad P(4) = z$$

buildingBlock₂(t) =
$$\frac{(t-2)(t-3)(t-4)}{(1-2)(1-3)(1-4)}$$

1 at t = 1, 0 at t = 2,3,4

• Assume we want

$$P(1) = w$$
, $P(2) = x$, $P(3) = y$, $P(4) = z$

buildingBlock_w(t) =
$$w \cdot \frac{(t-2)(t-3)(t-4)}{(1-2)(1-3)(1-4)}$$

• w at t = 1, 0 at t = 2,3,4

• Assume we want

$$P(1) = w$$
, $P(2) = x$, $P(3) = y$, $P(4) = z$

buildingBlock_x(t) =
$$x \cdot \frac{(t-1)(t-3)(t-4)}{(2-1)(2-3)(2-4)}$$

•
$$x$$
 at $t = 2$, 0 at $t = 1,3,4$

• Assume we want

$$P(1) = w$$
, $P(2) = x$, $P(3) = y$, $P(4) = z$

buildingBlock_y(t) =
$$y \cdot \frac{(t-1)(t-2)(t-4)}{(3-1)(3-2)(3-4)}$$

•
$$y \text{ at } t = 3, 0 \text{ at } t = 1,2,4$$

• Assume we want

$$P(1) = w$$
, $P(2) = x$, $P(3) = y$, $P(4) = z$.

buildingBlock_z(t) =
$$z \cdot \frac{(t-1)(t-2)(t-3)}{(4-1)(4-2)(4-3)}$$

•
$$z$$
 at $t = 4$, 0 at $t = 1,2,3$

• $P(t) = \text{buildingBlock}_{w}(t) + \text{buildingBlock}_{x}(t) +$

buildingBlock_v(t) + buildingBlock_z(t)

•
$$P(1) = w$$
, $P(2) = x$, $P(3) = y$, $P(4) = z$

 1

 x

 a

 b

 c

 out

1 *x a b c* out

1	$L_1(t)$	0	0	1	1	
x	$L_{x}(t)$	1	0	0	0	
а	$L_a(t)$	0	1	0	0	
b	$L_b(t)$	0	0	0	0	
С	$L_c(t)$	0	0	0	0	
out	$L_{out}(t)$	0	0	0	0	

coefficients

t^3	t^2	t	1
-0.333	2.5	-5.166	3.0
-0.166	1.5	-4.333	4.0
0.5	-4.0	9.5	-6.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

	_						
1		$R_1(t)$	0	0	0	2	
x		$R_{x}(t)$	1	0	1	0	
a		$R_a(t)$	0	1	0	0	
b		$R_b(t)$	0	0	1	0	
С		$R_c(t)$	0	0	0	1	
out		$R_{out}(t)$	0	0	0	0	

coefficients

<i>t</i> ³	t^2	t	1	
0.333	-2.0	3.666	-2.0	
-0.666	5.0	-11.33	8.0	
0.5	-4.0	9.5	-6.0	
-0.5	3.5	-7.0	4.0	
0.166	-1.0	1.833	-1.0	
0.0	0.0	0.0	0.0	

1	$O_1(t)$	0	0	0	0
x	$O_{x}(t)$	0	0	0	0
a	$O_a(t)$	1	0	0	0
b	$O_b(t)$	0	1	0	0
С	$O_c(t)$	0	0	1	0
out	$O_{out}(t)$	0	0	0	1

coefficients

t^3	t^2	t	1
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
-0.166	1.5	-4.333	4.0
0.5	-4.0	9.5	-6.0
-0.5	3.5	-7.0	4.0
0.166	-1.0	1.833	-1.0

this is also a polynomial

 $R(t) = 22.166t^3 + 167.5x^2 - 341.33x + 199$

 $O(t) = 11.333t^3 - 102.5x^2 + 300.166x - 200$

Check all Constraints

1 $L_1(t)$ 3 $L_x(t)$ 9 $L_a(t)$ 81 $L_b(t)$ 84 $L_c(t)$ 86 $L_{out}(t)$

L(t)

For t = 1, 2, 3, 4

Check all Constraints

$$L(t)$$
 · $R(t) = O(t)$
For $t = 1, 2, 3, 4$

- We don't make any assumption for the values $t \neq 1,2,3,4$
- More generalized, we can write X(t) = L(t)R(t) O(t)

Polynomials with same roots

• If a polynomial $p_1(x)$ has the same roots than another $p_2(x)$, they divide each other without residue

•
$$p_1(x) = c \cdot p_2(x)$$

- To check that our polynomial X(t) = L(t)R(t) O(t) is zero at t = 1,2,3,4
 - We construct Z(t) = (t-1)(t-2)(t-3)(t-4)

• Verify that
$$\frac{X(t)}{Z(t)} = H(t)$$

Polynomials with same roots

- We compute X(t) = L(t)R(t) O(t)
- We show Z(t) = (t 1)(t 2)(t 3)(t 4) is a divisor of X(t)
 - X(t) is 0 at t = 1,2,3,4
 - Thus $L(t) \cdot R(t) = O(t)$ at t = 1,2,3,4
- Compute $H(t) = \frac{X(t)}{Z(t)}$
 - If the witness were fake, this division leaves a residue
- All that's left to prove is H(t)Z(t) = X(t)

To check all constraints

$$X(t) = L(t)R(t) - O(t)$$

$$Z(t) = (t-1)(t-2)(t-3)(t-4)$$

$$H(t) = \frac{X(t)}{Z(t)}$$

- Instead of H(t)Z(t) = X(t), show H(t)Z(t) X(t) = 0everywhere
- Instead of H(t)Z(t) X(t) = 0 everywhere, pick a secret t and evaluate the 3 functions there (with ECC math)

Summary

- Alice:
 - List an arbitrary computation as a set of basic operations
 - Create L_(t), R_(t), O_(t) polynomials for each input, temporary variables, output and the constant 1
- Bob:
 - Creates the witness vector
 - Computes $L(t) = W \otimes L_{-}(t), R(t) = ..., O(t) = ...$
 - Divides H(t) = X(t)/Z(t)
- Alice:
 - Evaluates the equation H(t)Z(t) = X(t) at a point of her choosing, accepts if 0

Trusted Setup

- This is done non-interactively if Alice encrypts the point *t* as T = tG, and Bob proves that H(T)Z(T) X(T) = 0
- If Bob can break the encryption (or if he breaks into Alices computer), he can find t
 - knowing at which point Alice evaluates H(t)Z(t) = X(t), he can fake a solution
- Coda, Zerocoin, Zerocash, and others use zk-SNARKS
 - We need to trust that the creators do not collaborate with some users and share the secret value t

