
Zero-Knowledge Proofs II
zk-SNARKs

Oct. 21, 2019

Overview
• Recap Lelantus

• One efficient way to do 1-in-N proofs

• zk-SNARKs

• A general way to prove anything in Zero-Knowledge

• (if you don’t know how to do it any other way, use
zk-SNARKs)

Lelantus

Plaintext coins

hidden coins (Pedersen Commitments)

Mint Spend

JoinSplit

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
…

Lelantus Mint

Plaintext coins

hidden coins (Pedersen Commitments)

Mint

Proof: Pedersen Commitment valid

Lelantus
Spend

Plaintext coins

hidden coins (Pedersen Commitments)

Spend

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
73f143adf73708de491ff9d
…

Proof: Serial number
amount

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

JoinSplit

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
…

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
…

1-in-N

Input1

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
…

1-in-N

Input1 + Input2

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…

1-in-N

Input1 + Input2 + Input3

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1

Proof: valid Pedersen Commitment

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1 + Output2

Proof: valid Pedersen Commitment

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1 + Output2 + ExtraCashOut

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…

Lelantus
JoinSplit

hidden coins (Pedersen Commitments)

Input1 + Input2 + Input3 + Output1 + Output2 + ExtraCashOut=T

If , then T can be described as a factor of only and :

• does not have any components = no money was created or destroyed

c = ℋ(T |cT + dH + αF) H F

G

Proof of valid transaction: (c, d, α)

Used serial#
e8fb04ab61cfdd9ab54d9b1
ea6a1728b274a7e3c667523
cdcb04f2b45a6dd3c13e90c
050cf72a2c4ff1f4df4084a
5a35670340e4107632e4629
f59cc4cef45a8063e4afb65
2d28e9bb87f78a5c0b6b008
1c4433bd43daafa3806759b
4f587540daa9bcb002b3699
a6e434bb929b8c4d9adf1fb
73f143adf73708de491ff9d
95b96411c8dc99f6be2b443
…

Anonymous
Cryptocurrencies

Pedersen Commitments

1-in-N proofs

1-in-N proofs

1-in-N proofs

zk-SNARKs
Zero-Knowledge

Succinct Non-Interactive Argument of Knowledge

zk-SNARK
• A general purpose zero-knowledge tool for any computation

• Need to prove that you know the pre-image of a hash

• => zk-SNARK

• Need to build a secret cryptocurrency (e.g. Zerocoin)

• => zk-SNARK

• Need to prove that you know XYZ?

• => zk-SNARK

zk-SNARK

• A general purpose zero-knowledge tool for any
computation

• Very useful, highly relevant, but quite complicated

• We will give a high-level overview of how this works

• a complete discussion could be an entire semester

zk-SNARK
• Perform the computation storing any intermediate value

• All values of all variables, called the witness

• We encode the witness as a polynomial function

• We show that can divide , the constraint polynomial

• Only if is the witness valid

• If the witness is valid, the program was executed correctly

w(x)

w(x) c(x)

a(x) ⋅ w(x) = c(x)

zk-SNARK

• The trick is showing

• We show at a secret position

• Encode polynomials and position via ECC

a(x) ⋅ w(x) = c(x)

a(x) ⋅ w(x) − c(x) = 0 x

a, w, c x

zk-SNARK

• Alice wants to convince Bob that she executed a program

• Alice creates the witness

• Bob choses a position and verifies

w(x)

xeval
a(xeval) − w(xeval) − c(xeval) = 0

Evaluating two polynomials at a random
position is enough to check for equality

All that’s left to do

• Represent the proof of executing a program as a proof
that I know a divisor of a polynomial

• Encode the proof in ECC w(x)a(x) = c(x)

Proof of Knowledge of
Division

• Points can be added and multiplied

• given 3 points , I can
encode the polynomial

• The details on how to do the polynomial checks are
beyond the scope of today’s lecture

A = aG, B = bB, C = cG, D = dG
ax3 + bx2 + cx + d

x3A + x2B + xC + D

Proof of execution
• Computers run on hardware

• Theoretically, we can simulate any program with looking
at the binary circuits

1. Represent the computation as a binary circuit

• Or algebraic circuit for pure math problems

2. Reduction to a Rank 1 Constraint System (R1CS)

3. Representation as a Quadratic Assignment Problem (QAP)

Program Representation
• Assume we want to prove that we know a value so that

 (hint)

• Other applications:

• I know a value so that (proof of
knowledge of preimage)

• A secret blockchain: I know a transaction so that

• is the blockchain

• I know the private key/serial# of

• The output is not yet spend

x
x4 + x + 2 = 86 x = 3

x ℋ(x) = 23d23e1…

T
T

T

Flattening the computation
Proof: We know so that (hint)

• We can verify all basic operations (+,-,*,assignment)

• We need to represent the computation as a sequence of
basic steps (possibly introducing temporary variables)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x
out = c + 2 ×

+

x

+

x
×

x x

×

x 2

Proof: We know so that (hint)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Flattening the computation

O = L R
operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

 instead of as

basic unit for all

constants

1 2

We can generalize all operations using 3 vectors:

Each operation as vector
O=L R

operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂⋅ =

1 ⋅ x

⋅

We can generalize all operations using 3 vectors:

Multiplication: (Example)a = x ⋅ x

Each operation as vector
O=L R

operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂=

1 ⋅ x ⋅ = a ⋅ 1

⋅

We can generalize all operations using 3 vectors:

Addition: (Example)b = x + 7

Each operation as vector
O=L R

operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

0

0

0

1

0

0

1

0

0

0

0

0

7

1

0

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂=

1 ⋅ 1 (1 ⋅ 7) + (x ⋅ 1)⋅ = b ⋅ 1

Proof: We know so that (hint)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector

O=L R
operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =

Proof: We know so that (hint)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector

O=L R
operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =

Proof: We know so that (hint)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector

O=L R
operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =

Proof: We know so that (hint)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x

out = c + 2

Each operation as vector

O=L R
operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⋅ =

Proof: We know so that (hint)
x x4 + x + 2 = 86 x = 3

Summarized Constraints

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

1

x

a

b

c

out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1st constraint x ⋅ x = a
3rd constraint b + x = c

Witness
• To proof that we executed the computation for

 (hint) we create the following
witness
x4 + x + 2 = 86 x = 3

1

x

a

b

c

out

1

3

9

81

84

86

Witness fulfills all Constraints
0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(3 ⋅ 1) ⋅ (3 ⋅ 1) = (9 ⋅ 1)

⋅ =

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(9 ⋅ 1) ⋅ (9 ⋅ 1) = (81 ⋅ 1)

⋅ =

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

Witness fulfills all Constraints

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(1 ⋅ 1) ⋅ (3 ⋅ 1 + 81 ⋅ 1) = (84 ⋅ 1)

⋅ =

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

Witness fulfills all Constraints

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

3

9

81

84

86

1

x

a

b

c

out

1

3

9

81

84

86

1

3

9

81

84

86

(1 ⋅ 1) ⋅ (2 ⋅ 1 + 84 ⋅ 1) = (86 ⋅ 1)

⋅ =

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

Witness fulfills all Constraints

Witness
Naive approach

• Alice: Create the 3 groups of vectors as constraints

• Bob: Runs the computation, creates the witness

• Alice: checks that the witness fulfills all constraints

• Works, but is slow and uses lots of data

Quadratic Assignment
Problem

• We encode the constraints and witnesses as polynomials

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

x

a

b

c

out

L1(t)

Quadratic Assignment
Problem

• We encode the constraints and witnesses as polynomials

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

O=L R
operator
()⋅ , + , −

Quadratic Assignment
Problem

• Value encodes the step of the program

• We show that for the polynomial :

• This implies that it hold for all , i.e. all computational steps were done
correctly

t = 1,2,3,4

L−, R−, O−
L−(t) ⊗ Witness ⋅ R−(t) ⊗ Witness = O−(t) ⊗ Witness

t

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

Quadratic Assignment
Problem

 L1(1) = 0 L1(2) = 0 L1(3) = 1 L1(4) = 1

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

Creating Polynoms
, , ,
P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlock1(t) = (t − 2)(t − 3)(t − 4)

Creating Polynoms
, , ,
P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlock2(t) =
(t − 2)(t − 3)(t − 4)

(1 − 2)(1 − 3)(1 − 4)

1 at ,

0 at

t = 1
t = 2,3,4

Creating Polynoms

• Assume we want

, , ,

• at , 0 at

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlockw(t) = w ⋅
(t − 2)(t − 3)(t − 4)

(1 − 2)(1 − 3)(1 − 4)

w t = 1 t = 2,3,4

Creating Polynoms

• Assume we want

, , ,

• at , 0 at

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlockx(t) = x ⋅
(t − 1)(t − 3)(t − 4)

(2 − 1)(2 − 3)(2 − 4)

x t = 2 t = 1,3,4

Creating Polynoms

• Assume we want

, , ,

• at , 0 at

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlocky(t) = y ⋅
(t − 1)(t − 2)(t − 4)

(3 − 1)(3 − 2)(3 − 4)

y t = 3 t = 1,2,4

Creating Polynoms

• Assume we want

, , ,

• at , 0 at

P(1) = w P(2) = x P(3) = y P(4) = z

buildingBlockz(t) = z ⋅
(t − 1)(t − 2)(t − 3)

(4 − 1)(4 − 2)(4 − 3)

z t = 4 t = 1,2,3

Creating Polynoms

•

• , , ,

P(t) = buildingBlockw(t) + buildingBlockx(t)+

buildingBlocky(t) + buildingBlockz(t)

P(1) = w P(2) = x P(3) = y P(4) = z

Quadratic Assignment
Problem

L1(1) = 0

L1(2) = 0

L1(3) = 1

L1(4) = 1

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

L1(t) = − 0.333t3 + 2.5t2 − 5.166t + 3

Quadratic Assignment
Problem

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

Lx(1) = 1

Lx(2) = 0

Lx(3) = 0

Lx(4) = 0

Lx(t) = − 0.166t3 + 1.5t2 + −4.333t + 4

Quadratic Assignment
Problem

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1tt2t3

coefficients

-0.333 2.5 -5.166 3.0

-0.166 1.5 -4.333 4.0

0.5 -4.0 9.5 -6.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Quadratic Assignment
Problem

1

x

a

b

c

out

coefficients

0.333 -2.0 3.666 -2.0

-0.666 5.0 -11.33 8.0

0.5 -4.0 9.5 -6.0

-0.5 3.5 -7.0 4.0

0.166 -1.0 1.833 -1.0

0.0 0.0 0.0 0.0

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)
2

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

1tt2t3

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

Quadratic Assignment
Problem

1

x

a

b

c

out

coefficients

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-0.166 1.5 -4.333 4.0

0.5 -4.0 9.5 -6.0

-0.5 3.5 -7.0 4.0

0.166 -1.0 1.833 -1.0

1tt2t3

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

1

3

9

81

84

86

Adding the Witness

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂

1

3

9

81

84

86

Adding the Witness
L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂ this is also a polynomial

L(t) = 3.66t3 − 29x2 + 67.33x − 39

1

3

9

81

84

86

Adding the Witness

⨂

R(t) = 22.166t3 + 167.5x2 − 341.33x + 199

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

1

3

9

81

84

86

Adding the Witness

⨂

O(t) = 11.333t3 − 102.5x2 + 300.166x − 200

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

Check all Constraints

1

3

9

81

84

86

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂

1

3

9

81

84

86

⨂

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

1

3

9

81

84

86

⨂

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

=⋅

L(t) O(t)R(t) =⋅

For t = 1,2,3,4

Check all Constraints

L(t) O(t)R(t) =⋅

For t = 1,2,3,4

• We don’t make any assumption for the values

• More generalized, we can write

t ≠ 1,2,3,4

X(t) = L(t)R(t) − O(t)

Polynomials with same roots

• If a polynomial has the same roots than another
, they divide each other without residue

•

• To check that our polynomial is
zero at

• We construct

• Verify that

p1(x)
p2(x)

p1(x) = c ⋅ p2(x)

X(t) = L(t)R(t) − O(t)
t = 1,2,3,4

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4)
X(t)
Z(t)

= H(t)

Polynomials with same
roots

• We compute

• We show is a divisor of

• is 0 at

• Thus at

• Compute

• If the witness were fake, this division leaves a residue

• All that’s left to prove is

X(t) = L(t)R(t) − O(t)

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4) X(t)

X(t) t = 1,2,3,4

L(t) ⋅ R(t) = O(t) t = 1,2,3,4

H(t) =
X(t)
Z(t)

H(t)Z(t) = X(t)

To check all constraints

• Instead of , show
everywhere

• Instead of everywhere, pick a secret
and evaluate the 3 functions there (with ECC math)

X(t) = L(t)R(t) − O(t)

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4)

H(t) =
X(t)
Z(t)

H(t)Z(t) = X(t) H(t)Z(t) − X(t) = 0

H(t)Z(t) − X(t) = 0 t

Summary
• Alice:

• List an arbitrary computation as a set of basic operations

• Create polynomials for each input, temporary
variables, output and the constant 1

• Bob:

• Creates the witness vector

• Computes

• Divides

• Alice:

• Evaluates the equation at a point of her choosing,
accepts if 0

L−(t), R−(t), O−(t)

L(t) = W ⊗ L−(t), R(t) = …, O(t) = …
H(t) = X(t)/Z(t)

H(t)Z(t) = X(t)

Trusted Setup
• This is done non-interactively if Alice encrypts the point

as , and Bob proves that

• If Bob can break the encryption (or if he breaks into Alices
computer), he can find

• knowing at which point Alice evaluates ,
he can fake a solution

• Coda, Zerocoin, Zerocash, and others use zk-SNARKS

• We need to trust that the creators do not collaborate
with some users and share the secret value

t
T = tG H(T)Z(T) − X(T) = 0

t

H(t)Z(t) = X(t)

t
🤔

