
Zero-Knowledge Proofs III
Beyond zk-SNARKs

& Accumulators
Oct. 23, 2019

Recap zk-SNARKs

Flattening the computation
Proof: We know so that (hint)

• We can verify all basic operations (+,-,*,assignment)

• We need to represent the computation as a sequence of
basic steps (possibly introducing temporary variables)

1.

2.

3.

4.

x x4 + x + 2 = 86 x = 3

a = x ⋅ x
b = a ⋅ a
c = b + x
out = c + 2 ×

+

x

+

x
×

x x

×

x 2

We can generalize all operations using 3 vectors:

Each operation as vector
O=L R

operator
()⋅ , + , −

List of all variables:
1,x, a, b, c, out

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

x

a

b

c

out

1

x

a

b

c

out

1

x

a

b

c

out

⨂ ⨂ ⨂⋅ =

Proof: We know so that (hint)
x x4 + x + 2 = 86 x = 3

Summarized Constraints

0

0

0

0

0

1

1

0

0

0

0

0

2

0

0

0

1

0

1

x

a

b

c

out

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1st constraint x ⋅ x = a
3rd constraint b + x = c

Quadratic Assignment
Problem

L1(1) = 0

L1(2) = 0

L1(3) = 1

L1(4) = 1

1

x

a

b

c

out

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

L1(t) = − 0.333t3 + 2.5t2 − 5.166t + 3

Check all Constraints

1

3

9

81

84

86

L1(t)

Lout(t)

Lc(t)

Lb(t)

La(t)

Lx(t)

⨂

1

3

9

81

84

86

⨂

R1(t)

Rout(t)

Rc(t)

Rb(t)

Ra(t)

Rx(t)

1

3

9

81

84

86

⨂

O1(t)

Oout(t)

Oc(t)

Ob(t)

Oa(t)

Ox(t)

=⋅

L(t) O(t)R(t) =⋅

For t = 1,2,3,4

Polynomials with same
roots

• We compute

• We show is a divisor of

• is 0 at

• Thus at

• Compute

• If the witness were fake, this division leaves a residue

• All that’s left to prove is

X(t) = L(t)R(t) − O(t)

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4) X(t)

X(t) t = 1,2,3,4

L(t) ⋅ R(t) = O(t) t = 1,2,3,4

H(t) =
X(t)
Z(t)

H(t)Z(t) = X(t)

To check all constraints

• Instead of , show
everywhere

• Instead of everywhere, pick a secret
and evaluate the 3 functions there (with ECC math)

X(t) = L(t)R(t) − O(t)

Z(t) = (t − 1)(t − 2)(t − 3)(t − 4)

H(t) =
X(t)
Z(t)

H(t)Z(t) = X(t) H(t)Z(t) − X(t) = 0

H(t)Z(t) − X(t) = 0 t

Summary
• Alice:

• List an arbitrary computation as a set of basic operations

• Create polynomials for each input, temporary
variables, output and the constant 1

• Bob:

• Creates the witness vector

• Computes

• Divides

• Alice:

• Evaluates the equation at a point of her choosing,
accepts if 0

L−(t), R−(t), O−(t)

L(t) = W ⊗ L−(t), R(t) = …, O(t) = …
H(t) = X(t)/Z(t)

H(t)Z(t) = X(t)

Trusted Setup
• This is done non-interactively if Alice encrypts the point

as , and Bob proves that

• If Bob can break the encryption (or if he breaks into Alices
computer), he can find

• knowing at which point Alice evaluates ,
he can fake a solution

• Coda, Zerocoin, Zerocash, and others use zk-SNARKS

• We need to trust that the creators do not collaborate
with some users and share the secret value

t
T = tG H(T)Z(T) − X(T) = 0

t

H(t)Z(t) = X(t)

t
🤔

Arbitrary computation

• A zk-SNARK needs to know the computational steps
 beforehand

• No loops (you need to unravel loops)

• Not Turing complete

• Not well suited for long/complex operations

• How can we still enable arbitrary computations?

t = 1,2,3,…, n

Evaluate a SNARK

• How do you verify a zk-SNARK?

• you check whether at a random/
secret point

• This in itself is also a computation I can run in a SNARK

H(t)Z(t) − X(t) = 0

Chaining zk-SNARKs

run 1st step of
program

proof 1

input

eval SNARK of
1st step and run

2nd step of
program

eval SNARK of
(n-1)st step and
run 2nd step of

program

proof 2 final proof

A universal program
• Any program runs on a CPU

• The CPU itself (each cycle) is a fixed set of instructions

• why not simulate a CPU as a program?

vnTinyRAM

• Simulate CPU cycle with 3 proofs, namely a proof that

1. the fetched instruction was executed correctly

2. the right instruction was fetched from memory

3. each load from memory retrieves the last value
stored there (no one tampered with the memory)

• Side note: Memory consistency is done via Merkel-Trees

vnTinyRAM
“The generated vnTinyRAM circuit implements exactly one cycle of the CPU. It takes as input
a previous CPU state, along with a proof that the prior state was valid. It also takes the
supposed next state. Because the circuit checks the prior proof and that the transition is valid,
feeding the circuit through the SNARK algorithms spits out an updated proof that can then
be fed back into the universal circuit again to run the next clock cycle.

You keep doing this, feeding proofs back into the same circuit again to prove the next step,
until the program you’re running eventually answers YES (if it wouldn’t answer YES then
doing all this is pointless, you’re just burning CPU time). As the exact point at which the
program accepts might be sensitive, for privacy reasons you can keep iterating the CPU
beyond that time, it just won’t change the answer.”

— Mike Hearn

vnTinyRAM

Verification time / CPU cycle: program size , input size l n

vnTinyRAM

• If it can be run on a CPU (anything) it can be run as zk-
SNARK

• Verification of any arbitrary computation possible

• Performance is very slow, ~10 sec. for each simulated CPU
cycle

Alternatives to zk-SNARKS
• STARKS

• DARK

• SHARK

• Sonic

• PLONK

• Bulletproofs

• Supersonic

• Aurora
https://vitalik.ca/general/2019/09/22/plonk.html

Alternatives to zk-SNARKS
• STARKS

• DARK

• SHARK

• Sonic

• PLONK

• Bulletproofs

• Supersonic

• Aurora
https://vitalik.ca/general/2019/09/22/plonk.html

STARKS

• Relies on Hash functions only

• quantum resistant

• larger proofs

• few hundred kilobytes versus the 288 bytes in zk-
SNARKs

Bulletproof

• Represent the computation as Pedersen Commitments

• Everything done in ECC math

• Currently used for range proofs (e.g. MimbleWimble proof
that in vG + rH v > 0

Comparison
(secret evaluation point)t

Comparison

Comparison

— Elena Nadilinski, Devcon4
https://docs.google.com/presentation/d/1gfB6WZMvM9mmDKofFibIgsyYShdf0RV_Y8TLz3k1Ls0

zk-STARK

Bulletproof

zk-SNARK

faster

faster

More efficient setup (shorter)

More efficient
setup (shorter)

Trusted setup needed: Yes / No

Alternatives to zk-SNARKS
• STARKS

• DARK

• SHARK

• Sonic

• PLONK

• Bulletproofs

• Supersonic

• Aurora

Sonic

• Continuous trusted setup ceremony

• Everybody can chime in and add their
(secret) input

• As long as one person is honest, Sonic is
secure

Sonic

• Continuous trusted setup ceremony

• Everybody can chime in and add their
(secret) input

• As long as one person is honest, Sonic is
secure

Program,

Point
L−(), R−(), O−()

t

Let’s move the
evaluation point a bit to

the left to t + t′�

Even
better: let’s evaluate this

at t + t′� + t′�′�

This picture is only conceptually correct, in reality SONIC has more differences to zk-SNARK

Summary zk-Something
• It is possible to verify the correct execution of arbitrary code

• zk-SNARKs sparked a revolution in Zero-Knowledge Proofs

• More to come in the near future …

Papers found for “zero knowledge" "succinct" "argument"

until October

Coda
• A blockchain completely in zk-SNARK

• Verification of a transactions:

1. A (recursive) SNARK that verifies a block was generated starting at the

genesis block

2. A SNARK verifying that the inputs are a leaf node in a Merkle Tree

• Snarks are recursively build up. If block 1 is a correct successor of block 0
 and block 2 is a successor of block 1 , then we can build a

SNARK that evaluates both transitions to get a proof that 2 is a successor of 0
σ(0 → 1) σ(1 → 2)

σ(0 → 2)

0

1

2

3

4
σ(0 → 1)

σ(1 → 2)

σ(0 → 2)

σ(2 → 4)

σ(0 → 4)

Coda
• A blockchain completely in zk-SNARK

• Consensus, block building, zk-SNARK construction is
done by powerful nodes

• Verification can be done by any user

• Data “fits into a couple of tweets”

• Verification time is ~100ms

• no ‘delegation of trust’ to the miners (because in other
protocols, the blockchain grows and becomes
infeasible to verify for normal users)

• Constant verification size/time in Coda

End of Zero
Knowledge

Questions?

Accumulators
UTXO replacement

Problem statement
• Currently the UTXO set in Bitcoin is a simple list

• UTXO: Unspend transition outputs (coins in circulation)

• The miners need to keep track of this list

https://www.blockchain.com/charts/utxo-count?timespan=2years

Bitcoin: UTXO set size

Problem statement

• What if we shift the burden of proving that I own a
transaction to the user

• blockchain miner create blocks (Hashes of parent
blocks, Merkle Trees)

• Can proof that an element is part of the blockchain

• users could maybe proof to the miners that the
transaction output is not yet spend (in UTXO set)

Accumulators

• An accumulator is a short element (a number, a hash, etc.)
that contains a proof about set membership

• Example: A Merkle Tree root is an accumulator

• Set membership can be proven by showing a path from
the root to the leaf containing the data

• If the element is not in the Merkle Tree, such a path
cannot be created.

Merkle Tree as Accumulator

• Merkle Trees are not very flexible

• To add/delete an element, we need to rebuild the entire
tree, i.e. runtime to add delete an elementO(n)

Accumulator

• What exactly do we need for an accumulator?

• Base value (i.e. Merkle Tree root)

• Either

• the set of inputs (to generate a membership proof
on-the-fly when needed)

• or the set of membership proofs for each element

Accumulator

• What exactly do we need for an accumulator?

• Base value (i.e. Merkle Tree root)

• Either

• the set of inputs (to generate a membership proof
on-the-fly when needed)

• or the set of membership proofs for each element

 = Accumulator

 = Witness

Accumulator

• Operations

• Initialize: Generate an empty accumulator

• Add element: re-compute the accumulator

• Delete element: re-compute the accumulator

• Witness update: re-compute the witness for an element

More specific terminology

• Accumulator: “A cryptographic accumulator is a primitive
that produces a short binding commitment to a set of
elements together with short membership/non-membership
proofs for any element in the set.”

• Dynamic Accumulator: “Accumulator which supports
addition/deletion of elements with O(1) cost, independent of
the number of accumulated elements”

• Universal Accumulator: “Dynamic Accumulator which
supports membership and non-membership proofs”

 — D. Boneh, B. Bünz, B. Fisch,

“Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains”, 2018

RSA Accumulator

• Using modulo math, assume we have a number

• Assume we have a hash function that creates a prime
number as output

• Then is a RSA-Accumulator

A ∈ ℤN

ℋP(…)

A′� = Aℋp(document)

Module Math

+4

(a + b) mod N = ((a mod N) + (b mod N) mod N)

Addition, Multiplication,
etc. all well defined

N prime (13)

Module Math

N not prime (14)

Now we have

 7 ⋅ 2 = 14 = 0 mod 14

Module Math

N not prime (14)

Now we have

 7 ⋅ 2 = 14 = 0 mod 14

Divisors of 0!!!!!

0
7

= 2 mod 14

Module Math

N not prime (14)

Group order:

How often can I multiply
an element before I get
back to the beginning

Example: base element 3

 3, 6, 9, 12, 1, 4, 7, 10, 13, 2, 5, 8, 11, 0

order 14

Module Math

N not prime (14)

Group order:

How often can I multiply
an element before I get
back to the beginning

Example: base element 6

6, 12, 4, 10, 2, 8, 0

order 7

Module Math

N not prime (14)

Group order:
a*b 3 5 6 7
0 0 0 0 0
1 3 5 6 7
2 6 10 12 0
3 9 1 4 7
4 12 6 10 0
5 1 11 2 7
6 4 2 8 0
7 7 7 0 7
8 10 12 6 0
9 13 3 12 7
10 2 8 4 0
11 5 13 10 7
12 8 4 2 0
13 11 9 8 7

Module Math
Group with unknown order

• Assume 2 large prime numbers and

• It is impossible to compute and given

• Do all math

• Given a random value , its order is not known

p, q n = pq

p q n

mod n

A

RSA Acumulator

• Init: Empty accumulator

• Add an element (if is prime)

• Witness: , because

• The accumulator without the element is the witness

• Verify by adding the element and check for equality

A random← ℤn

Anew = Ae e

A
1
e (A

1
e)

e
= A

RSA Accumulator

• If the order is unknown, can not be computed for a
new

• When adding an element, keep the accumulator from
before as a witness

A
1
e

e

Witness

A Aeadd e

keep A as
witness for e

Adding element to accumulator e A

A

Witness

A Aeadd e

keep A as
witness for e

Adding element to accumulator f A′�

add f

A

Aef

Afadd f

update witness for e

Ae

keep as
witness for f

Ae

Witness

A Aeadd e

keep A as
witness for e

Adding element to accumulator f A′�

add f

A

Aef

Afadd f

update witness for e

Ae

keep as
witness for f

Ae

Verify:

(Af)e = Aef

(Ae)f = Aef

Witnesses
• Accumulator

• has accumulated the set

• is a single number (2048 bits), independent of the size of
the set

• A witness for an element is simply

• a single number

• Verification via one exponentiation

B = Ae1⋅e2⋯en

B 𝒮 = {e1, e2, …, en}

B
𝒮

Wei
ei Ae1⋯ei−1ei+1⋯en

(Wei)
ei ?= B

Hash to prime

• Currently we treated all elements as prime numbers

• We need a hash function that produces primes

ei

Hash to prime
• Currently we treated all elements as prime numbers

• We need a hash function that produces primes

• The output of a hash is a number

1. Test for primality.

• if yes done

• if no hash the output once more. GOTO 1

 until prime

ei

→
→

ℋ(e) → ℋ(ℋ(e)) → ℋ(ℋ(ℋ(e))) → …

UTXO Replacement

• Theoretically, bitcoin could replace the UTXO set with an
RSA Accumulator

• Adding the output of a new transaction:

• Spending: Prove membership via witness

• Elements are removed, when output is spend

• Witness itself is accumulator with the value

Aℋ(tx output)

Wtxo

Summary
• Accumulators are can be used to squeeze a large set into a

single element

• Merkle Tree root can be seen as an accumulator

• Even a blockchain is an accumulator

• Dynamic accumulators: adding and deleting elements

• Efficient accumulators perform adding/deleting in

• As a UTXO replacement, they shift the burden of tracking the
UTXO set to the individual users

O(1)

Remarks
• Several algorithms exist to deal with large numbers of

elements

• Naively, updating elements requires steps

• Intelligently done, only steps are needed

• If the prime values are known, a new witness can be
invented, since can be computed easily for any

• are called toxic waste (trusted setup)

M O(M)

O(log M)

p, q
A1/x x

p, q

