
Verifiable Random Functions 
and  

Verifiable Delay Functions
Caleb Smith

University of Virginia

Why do these matter?

Alternative consensus protocols

Applications to public randomness generation

Leader election

Bitcoin Proof of Work style

Everyone generates a random number, and the largest is the leader?

Generate random numbers

Assume we have a hash function, , and we have a public challenge, h 𝑥

 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)

Generate random numbers

Assume we have a hash function, , and we have a public challenge, h 𝑥

 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)
 𝑘𝑒𝑦 ← {0,1}𝑛

𝑦 = h(𝑘𝑒𝑦 | |𝑥)

?

Verifiable Random Function

Introduced by Micali, Rabin, and Vadhan in 1999

Security Property:

𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆) → (𝑠𝑘, 𝑝𝑘)
𝑃𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥) → (𝑦, 𝜋)

𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘, 𝑥, 𝑦, 𝜋) → {0,1}

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑎𝑛 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦 𝑐𝑎𝑛𝑛𝑜𝑡 𝑓𝑖𝑛𝑑 𝑦0 ≠ 𝑦1 𝑠𝑢𝑐h 𝑡h𝑎𝑡
𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘, 𝑥, 𝑦0, 𝜋0) = 1 = 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘, 𝑥, 𝑦1, 𝜋1)

Pseudorandom Proof

Generate random numbers

Assume we have a hash function, , and we have a public challenge, h 𝑥

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛
𝑦, 𝜋 = 𝑃 𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥)

?

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛
𝑦, 𝜋 = 𝑃 𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥)

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛
𝑦, 𝜋 = 𝑃 𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥)

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛
𝑦, 𝜋 = 𝑃 𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥)

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛
𝑦, 𝜋 = 𝑃 𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥)

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛
𝑦, 𝜋 = 𝑃 𝑟𝑜𝑣𝑒(𝑠𝑘, 𝑥)

Verifiable Random Function Assumptions

RSA + Random Oracle [Micali, Rabin, and Vadhan 1999]

Decisional Bilinear Diffie Hellman Inversion [Dodis and Yampolski 2004]

Decisional Diffie Hellman + Random Oracle [Papadopoulos et al 2017]

Verifiable Delay Functions

Introduced by Boneh, Bonneau, Bünz, and Fisch in 2018

Delay – Takes a minimum amount of parallel time to compute

Function – Unique outputs

Verifiable – Third parties can verify that it was evaluated correctly

Verifiable Delay Function

Alice wants to require Bob to spend solving a challenge𝑇 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒

10

Takes parallel time,
𝑇

Unique solution

Verifiable Delay Function Syntax

A function that takes a long time to compute, has unique outputs, and can
be verified quickly

, specifies input and output space

, runs in at least

, runs in time

𝑆𝑒𝑡𝑢𝑝(𝜆, 𝑇) → 𝑃𝑃 = (𝑒𝑘, 𝑣𝑘)

𝐸𝑣𝑎𝑙(𝑒𝑘, 𝑥) → (𝑦, 𝜋) 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒 𝑇

𝑉𝑒𝑟𝑖𝑓𝑦(𝑣𝑘, 𝑥, 𝑦, 𝜋) → {𝐴𝑐𝑐𝑒𝑝𝑡, 𝑅𝑒𝑗𝑒𝑐𝑡} 𝑡 ≪ 𝑇

11

Proof from the Evaluator to
help the Verifier

Verifiable Delay Function Properties

Sequentiality – cannot be solved in less than ,
with number of processors

Uniqueness – If the adversary runs in time , then they are
unable to find a that passes verification

Eval(𝑥) 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒 𝑇
𝑝𝑜𝑙𝑦(𝑇)

𝑂(𝑝𝑜𝑙𝑦(𝑇, 𝜆))
𝑦 ≠ 𝐸𝑣𝑎𝑙(𝑥)

12

Application - Randomness Beacon

Generate a stream of public random values

 r1 r2 r3 r4 r5 r6 … rn

Can submit values from 1:00pm to 1:10pm

 𝑓(𝑟1, 𝑟2, …, 𝑟𝑛) =

𝑟1 ⊕ 𝑟2 ⊕ … ⊕ 𝑟𝑛

13

Application - Randomness Beacon

Generate a stream of public random values

 r1 r2 r3 r4 r5 r6 … rn

Can submit values from 1:00pm to 1:10pm

h(𝑟1, 𝑟2, …, 𝑟𝑛) = 𝑥

𝑉𝐷𝐹 . 𝐸𝑣𝑎𝑙(𝑥) → (𝑦, 𝜋)
𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑦) → 𝑣

14

Application – Proof of Space and Time

Cohen and Pietrzak from Chia

Change the assumption from majority of computing power is honest to
2/3 of committed disk space is honest

Proofs of Space will populate some disk space with some function and
given a challenge, will find their “best” solution almost instantly

𝑓

Why not just chain Proofs of Space?

The next Proof of Space challenge is the hash of the previous Proof of
Space solution and proof

There are attacks where an adversary can “tweak” elements in their
control to bias the next challenge

This does not occur in Bitcoin because of the cost to split resources

Adding Verifiable Delay Functions

Take the solution and proof of the Proof of Space, , and

compute

Then determines the next Proof of Space challenge

We can now argue that an adversary cannot determine how to “tweak”
anything to bias the next challenge

(𝑦, 𝜋𝑃𝑜𝑆)
𝑥 = h(𝑦 | 𝜋𝑃𝑜𝑆), 𝑉𝐷𝐹 . 𝐸𝑣𝑎𝑙(𝑥) → (𝑦, 𝜋𝑉𝐷𝐹)

𝑓(𝑦)

Verifiable Delay Function Assumptions

Repeated squaring in group of unknown order is inherently sequential

Let be an RSA modulus where nobody knows the factorization 𝑁

𝑥2𝑇𝑚𝑜𝑑 𝑁
Conjectured to take sequential squarings𝑇

Questions?

19

