Contract and Protocol
Validation/Verification

September 25, 2019

Announcements

Only submit a question/takeaway slip at the start of class

Homework due next Wednesday:

e Submit hard copy unless otherwise arranged, 1 copy

e Monday before/during class is your final chance to ask
questions—no email after class Monday

Final project information on last slide

Monday, we talked about there being many buggy smart contracts.

Even protocol code and protocol designs have had many flaws!

BTC Block 74638

_ '_) Strange block 74638 X R

cC (O @ https://bitcointalk.org/index.php?topic=822.0 B | e % | | Q Search v inNn 9 0 &

September 25, 2019, 03:29:00 AM |

Welcome, Guest. Please login or register.

News: If you like a topic and you see an orange "bump" link, click it. More info.

L HELP SEARCH LOGIN REGISTER MORE

}3 Search

Bitcoin Forum > Bitcoin > Bitcoin Discussion > Strange block 74638

« previous topic next topic »

Pages: [1] 2 » All

print
f"i Author Topic: Strange block 74638 (Read 43206 times)
jgarzik Strange block 74638
Legendary @ August 15, 2010, 06:08:49 PM #1
SIDIDIH) Merited by vapourminer (1)

Activity: 1582

Merit: 1005 The "value out" in this block #74638 is quite strange:
Code:
& {

"hash" : "0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6£f7bl470a7eclc",
"ver" : 1,
"prev_block" : "0000000000606865e679308edf079991764d88e8122ca9250aef5386962b6e84",
"mrkl root" : "618ebal4419e13c8d08d38c346da7cdlc7c66£d8831421056ae56d8d80b6ec5e",
"time" : 1281891957,
"bits" : 469794830,
"nonce" : 28192719,
"n_tx" : 2,
"tx" s [

{

"hash" : "012cd8£8910355da9dd214627a3lacfeb6lac66el3560255bfd87d3e9c50elca”,

" "

ver" : 1,
"vin_sz" : 1
"vout_sz" :
"lock_time"

"

4

o,

v =~

in" : [

{

92233720368.54277039 BTC? Is that UINT64_MAX, I wonder?

2010

Bitcoin had already been 4 major bugs discovered and fixed
This was an inflation bug: the creation of coins out of thin air
184 billion new BTC

Exploitation of the bug was noticed within 90 minutes

Satoshi and Gavin Andresen fixed it within 2 hours

* Why was speed important?

satoshi
Founder
Sr. Member

Activity: 364
Merit: 2168

&

satoshi
Founder
Sr. Member

Activity: 364
Merit: 2168

&

kencausey
Newbie

C @

() @& https://bitcointalk.org/index.php?topic=823.0 Bl e ©@ v | Q search v IN 9 0 & =

I applied your changes manually, and uploaded the result here: http://yyz.us/bitcoin/patch.bitcoin-gavin-overflow-quick-fix

Jeff Garzik, Blog CEO, former bitcoin core dev team; opinions are my own.
Visit blog.com / metronome.io
Donations / tip jar: 1BrufViLKnSWtuWGkryPsKsxonV2NQ7Tcj

¢S, Re: overflow bug SERIOUS re
““" August 15, 2010, 08:59:09 PM

Here's the preliminary change. Look right? I have more changes to make, this isn't all of it. Will SVN shortly.

Code:

bool CheckTransaction() const
{
// Basic checks that don't depend on any context
if (vin.empty() || vout.empty())
return error("CTransaction::CheckTransaction() : vin or vout empty");

// Check for negative and overflow values
int64 nTotal = 0;
foreach(const CTxOut& txout, vout)

{
if (txout.nValue < 0)
return error("CTransaction::CheckTransaction() : txout.nValue negative");
if (txout.nValue > 21000000 * COIN)
return error("CTransaction::CheckTransaction() : txout.nValue too high");
nTotal += txout.nValue;
if (nTotal > 21000000 * COIN)
return error("CTransaction::CheckTransaction() : txout total too high");
}

Don't sticky the topic, nobody looks up there. There'll be enough posts to bump.

&> Re: overflow bug SERIOUS P
" August 15, 2010, 09:06:45 PM

It would help if people stop generating. We will probably need to re-do a branch around the current one, and the less you generate the faster that will be.

A first patch will be in SVN rev 132. It's not uploaded yet. I'm pushing some other misc changes out of the way first, then I'll upload the patch for this.

:> Re: overflow bug SERIOUS #8
" August 15, 2010, 09:09:53 PM

Ifm
Full Member

Activity: 196
Merit: 100

\> Re: Strange block 74638 .
August 15, 2010, 07:34:18 PM

Im speculating here somewhat but from what I can see someone has generated a transaction, probably using a custom modification of the software to
generate a transaction which exploits a weakness in the code. The code check each transaction output for negative numbers individually (up to ver 0.3.8 at
least) but forgot to check that the sum of two outputs (where you have the normal output of a transaction and the "change" leftover amount returned to the
sender) is negative. So if you put two large but positive values in the transaction the overflow is then only checked that it is less than or equal to the inputs.

Normally the inputs are equal to the outputs of a transaction. The exception is when there is a "fee" charged for the transaction. The net allows anyone to
voluntarily pay any amout for a fee. SO when the sum was negative the difference from the input looked like a fee. It slipped thru all the checks. Her is some

of the details:

out Value 1:92233720368.54(7ffffffffff8 5ee0)
out Value 2:92233720368.54(7ffffffffff8 5ee0)
the sum would make -0.01 BTC

generated transaction "reward" including 51 bitcent "fee"
out Value:50.51(000000012d1024c0)

that implies the input value was 0.50 BTC

We still have vulnerabilities today

Lightning

_ [nghtning-deV] CVEs aSSigned for x

C ® & https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-Augu oo % | Q Ssearch v oiN 9 0 & =

[Lightning-dev] CVEs assigned for lightning projects: please upgrade!

Rusty Russell rusty at rustcorp.com.au
Fri Aug 30 09:32:48 UTC 2019

» Previous message: [Lightning-dev] Proposal: Automated Inbound Liquidity With Invoices
o Messages sorted by: [date] [thread] [subject] [author]

Hash: SHA256

Security issues have been found in various lightning projects which
could cause loss of funds.

Full details will be released in 4 weeks (2019-09-27), please uprade
well before then.

Effected releases:

CVE-2019-12998 c-lightning < 0.7.1
CVE-2019-12999 1nd < 0.7
CVE-2019-13000 eclair <= 0.3

Cheers,
Rusty.
----- BEGIN PGP SIGNATURE-----

1QIzBAEBCAAJFiEEFe6NbKsOfwz5mb/L2SAObNGtuPEFAl1107UAACgkQ2SAObLNGt
uPFR7XAAqlcY/gCzfx5S149BwWLIVr5EZ1KYxasIoU4FoiAXLNOSRMksBLY+gUA3L
7XuPi70JSsnJc0Gvg6DnWo8W/jgAETgK0XeCyESdtX1tLeXMEiCoAXccRBT /hNbr
aHRiyeRO6YnrfzJIN2CKStzXUvoVEvyB41pMZ+dTJYdulOUs20ELU/zzSQe/syGnD
7kujvBVyk4LJIYQ9piGllpc4Y8mORK2ttYCVk4HCy+eulRGHRVzel35ve2MhQvVOd
Mzs571gXM8k+ZUumD5eB6pgVEN1FzgFVaywYvE7+RSZIx185qosHTbQU84icyunp
W68FhCk9DMUY1hU81BVyX1gS1+YhBYvm792K41CSJ9CQOBZ200x2tz9Ru0/3DPSol
RCZ3+h8SCKai8ZASXhz4dL4nXSpdKNjJrQdRvp7Ile2netkZpaF2Dyd7FDvFnhad
SWP/juo/n9rmkyfbuxQ¥j5sdixvV9G9cpV85BnQDX558r+AMRPVin/xs5NBZMknkN
S7Wc9ag8nlVUeoTV5+TnGbz8NPXyYLNSotJdwBnA+RWTD9emCBah3UOXV1JR7N5e
nZuumPauLJyZESzxvRDgQ0Hca7hMCMBh+xJ/OFDy+n4oHXFLihCtY3EktSE43v2N
+PXbLFXw9w7 jSPxn5FgqzB9D/E/egkLe/+UKsnQ0ji8trEd36DU=

=Z6RL

o Previous message: [Lightning-dev] Proposal: Automated Inbound Liquidity With Invoices
o Messages sorted by: [date] [thread] [subject] [author]

More information about the Lightning-dev mailing list

Lightning

4 Lightning Labs #~ @Iightning - Sep 10, 2019 4
Replying to @lightning
Please upgrade to the latest versions, as they are not at risk. These
are:

*Ind 0.7.1
» c-lightning 0.7.1
* eclair 0.3.1

% Lightning Labs
@lightning

This is also a great time to remind folks that we have limits in
place to mitigate widespread funds loss at this early stage.
There will be bugs.

Don't put more money on Lightning than you're willing to lose!

Q70 9:21 AM - Sep 10, 2019 @

O 59 people are talking about this >

ZCoin Bug (2017)

How we discovered the bug

Slightly before midnight on February 16th GMT+0, during a check to analyze how widely used Zerocoin
transactions were in Zcoin, we discovered that the total Zerocoin spend amounts did not tally with the

number of mint transactions and the spend transactions far exceeded the number of mint transactions.

Upon further investigation, the dev team discovered that at block 11002, the serial number for the spend
transaction had been reused which meant that someone was exploiting a single proof to generate multiple

spends. If the code was working correctly, the duplicate serial numbers should have been rejected.

What we did following discovery of the bug

In the following few hours, our developers had identified that the issue was caused by a “==" sign being used

“_n

instead of a “=" sign as linked here.

Source: https://zcoin.io/zcoins-zerocoin-bug-explained-in-detail/

ZCoin Bug (2019)

We found the root cause of the irregular Zerocoin spends on the 19 April 2019. An emergency update 13.7.9
is now available to disable Zerocoin completely while we move to our Sigma implementation. We are in touch

with a number of other Zerocoin projects and are working together to secure it.

We recommend any projects utilizing Zerocoin (regardless of which implementation you are using) to disable

Zerocoin on sporks or at a consensus layer.

A disclosure with the root cause of the fix will be released once we are satisfied that there is no longer any

threat.

Source: https://zcoin.io/update-on-zerocoin-spends/

ZCash Bug

Originated in fundamental 2013 cryptography paper

Discovered by an engineer working for the company that
developed ZCash

Allowed infinite creation of coins
People think it wasn’t exploited, but we don’t know

Kept quiet, fix developed over many months, pushed, and
then announced

V&V

e Validation: Are our specifications correct? Are we making
the right thing?

e Verification: Did we faithfully implement the specification?

Which of the previous examples were which?

Back to Lightning...

Paper released in past week:

A Composable Security Treatment of the
Lightning Network

Aggelos Kiayias''? and Orfeas Stefanos Thyfronitis Litos®

! University of Edinburgh
> IOHK
akiayias@inf.ed.ac.uk, o.thyfronitis@ed.ac.uk

Abstract. The high latency and low throughput of blockchain proto-
cols constitute one of the fundamental barriers for their wider adoption.
Overlay protocols, notably the lightning network, have been touted as
the most viable direction for rectifying this in practice. In this work we
present for the first time a full formalisation and security analysis of
the lightning network in the (global) universal composition setting that
takes into account a global ledger functionality for which previous work
[Badertscher et al., Crypto’17] has demonstrated its realisability by the
Bitcoin blockchain protocol. As a result, our treatment delineates exactly
how the security guarantees of the protocol depend on the properties of
the underlying ledger. Moreover, we provide a complete and modular
description of the core of the lightning protocol that highlights precisely
its dependency to underlying basic cryptographic primitives such as dig-
ital signatures, pseudorandom functions, identity-based signatures and
a less common two-party primitive, which we term a combined digital
signature, that were originally hidden within the lightning protocol’s im-
plementation.

“Our analysis is based on the formal specification, not an implementation. As a result, our
work does not rule out bugs in the various implementations, only in the specification...

|deally, formal verification of the code, which would prove that it matches the specification,
would increase our trust to the system. But before that, a machine-readable version of the
specification would be needed.”

-Orfeas Litos

How to Judge
Specification?

e Security analysis
e Game theory

e Simulation

Test Cases

e Given an implementation, traditional testing with test
cases is good

e But how do you know you’re testing everything you need
to test? How confident can you really be that the
implementation conforms to the specification?

Formal Verification

e Proving the correctness of a system with respect to its
formal specifications or properties, using formal methods
of mathematics

o Used for hardware or software

e More for hardware. Why?

e Need a mathematical model of system that can then
construct proofs within; several options

It’s difficult

@ Not Secure — compcert.inria.fr ¢

PARTNERS MOTIVATIONS RESEARCH COMPILER PUBLICATIONS DOWNLOADS

COMPCERT

COMPILERS YOU CAN FORMALLY TRUST

The CompCert project investigates the formal verification of realistic compilers usable for

MENU

critical embedded software. Such verified compilers come with a mathematical, machine-
checked proof that the generated executable code behaves exactly as prescribed by the

Home A

semantics of the source program. By ruling out the possibility of compiler-introduced Part. »
artners

bugs, verified compilers strengthen the guarantees that can be obtained by applying

Motivations A
formal methods to source programs.

Research A
The main result of the project is the CompCert C verified compiler, a high-assurance The Compcert C compiler A
compiler for almost all of the C language (ISO C99), generating efficient code for the Publications ”
PowerPC, ARM, RISC-V and x86 processors. Downloads A

Get CompCert C »

._,__ . H‘f‘tﬂﬁé;

NEWS

[09/2019] CompCert C version 3.6 is released. Novelties include support for the AArch64
(ARMV8 in 64-bit mode) target architecture, and better support for generating branchless

code, including a new if-conversion pass that turns conditional statements and expressions

Recall: For any Turing complete language, finding all possible runtime errors in
an arbitrary program is undecidable

Does this make us think differently about Turing complete smart contract languages?

https://en.wikipedia.org/wiki/Decision_problem

TLA+

Created by Leslie Lamport

A formal specification language for modeling programs
and systems

Especially suited for modeling concurrent and distributed
systems

Used by Amazon for AWS

People {"alice", "bob"}

Items {"ore", "sheep", "brick"}

(* --algorithm trade

variable owner_of \in [Items People]

giveitem \in 1..3
variables item \in Items,
owner = owner_of[item],
to \in People,
origin_of trade \in People
begin Give:
if origin_of_trade = owner then
owner_of[item] to;
end if;
end process;
end algorithm; *)

Source: https://learntla.com/introduction/

Deductive Verification

e |nteractive proof assistants
e HOL, Coq, Isabelle, etc.

e (Can often export to another language

e SMT (Satisfiability modulo theories) solvers

e (Constraint satisfaction
o See /3

Dependent Types

What if a type's definition is dependent on a value?

Example: A type not just for integers, but for integers less
than 3

What does this allow you to do at compile time?

Languages: Agda, Coq, F*, Idris, and more

e It’'s not surprising if you haven’t heard of any of these

Curry-Howard Correspondence

Dependent Types

What if a type's definition is dependent on a value?

Example: A type not just for integers, but for integers less
than 3

What does this allow you to do at compile time?

Languages: Agda, Coq, F*, Idris, and more

e It’'s not surprising if you haven’t heard of any of these

Curry-Howard Correspondence

Other Worthwhile Mentions

e Penetration testing
e Audits

e Many eyes

Final Projects

Poster session and brief report

Work alone or group of up to 3
* All members of a group get the same grade

Choose something you find interesting
e But ask for help if you struggle getting an idea

You have many options

e Implement a system, for example an interesting smart contract, a protocol, a game, a
key management system, etc.

e Conduct research, for example design an algorithm, design a protocol, benchmark
existing systems, perform cryptographic analysis, write a specification, formally verify
some open source code, etc.

e Survey some area of technology

Check your project ahead of time in office hours to verify appropriateness of scope

